4.7 Article

Hepatokine Selenoprotein P-Mediated Reductive Stress Causes Resistance to Intracellular Signal Transduction

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 33, Issue 7, Pages 517-524

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2020.8087

Keywords

diabetes; insulin resistance; oxidative stress; reductive stress; selenoprotein P; signal transduction

Funding

  1. JSPS KAKENHI [JP17H04199, JP18K19560]
  2. Takeda Science Foundation

Ask authors/readers for more resources

Significance: Selenoprotein P functions as a redox protein through its intrinsic thioredoxin domain and by distributing selenium to intracellular glutathione peroxidases, that is, glutathione peroxidase 1 and 4. Recent Advances: Selenoprotein P was rediscovered as a hepatokine that causes the pathology of type 2 diabetes and aging-related diseases, including exercise resistance in the skeletal muscle, insulin secretory failure in pancreatic beta cells, angiogenesis resistance in vascular endothelial cells, and myocardial ischemic-reperfusion injury. It was unexpected for the antioxidant selenoprotein P to cause insulin resistance, because oxidative stress associated with obesity and fatty liver is a causal factor for hepatic insulin resistance. Critical Issues: Oxidative stress induced by the accumulation of reactive oxygen species (ROS) has a causal role in the development of insulin resistance, whereas ROS themselves function as intracellular second messengers that promote insulin signal transduction. ROS act both positively and negatively in insulin signaling depending on their concentrations. It might be possible that selenoprotein P causes reductive stress by eliminating a physiological ROS burst that is required for insulin signal transduction, thereby causing insulin resistance. In a large-scale intervention study, selenium supplementation that upregulates selenoprotein P was paradoxically associated with an increased risk for diabetes in humans. This review discusses the molecular mechanisms underlying the selenoprotein P-mediated resistance to angiogenesis and to exercise. Future Directions: Selenoprotein P may be the first identified intrinsic factor that induces reductive stress, causing resistance to intracellular signal transduction, which may be the therapeutic target against sedentary-lifestyle-associated diseases, such as diabetes and obesity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available