4.6 Article

Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/mik-675/APC axis

Journal

AGING-US
Volume 12, Issue 11, Pages 10527-10543

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.103277

Keywords

human amnion-derived mesenchymal stem cells; osteogenic differentiation; long noncoding RNA H19; miR-675; adenomatous polyposis coli

Funding

  1. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) [2018-87]
  2. Jiangsu Provincial Commission of Health and Family Planning, Nanjing, China [BJ18035]
  3. National Natural Science Foundation of China [81800936, 81670966]
  4. Natural Science Foundation of Jiangsu Province [BK20180668, BK20190648]
  5. Southeast University-Nanjing Medical University Cooperative Research Project [2242018K3DN17]
  6. China Postdoctoral Science Foundation Funded Project [2018M640503, 2019T120445]
  7. Jiangsu Postdoctoral Science Foundation Funded Project [2018K251C]
  8. Jiangsu Province Undergraduate Innovation and Entrepreneurship Training Program [201910312004Z]

Ask authors/readers for more resources

Bone volume inadequacy is an emerging clinical problem impairing the feasibility and longevity of dental implants. Human bone marrow mesenchymal stem cells (HBMSCs) have been widely used in bone remodeling and regeneration. This study examined the effect of long noncoding RNAs (lncRNAs)-H19 on the human amnion-derived mesenchymal stem cells (HAMSCs)-droved osteogenesis in HBMSCs. HAMSCs and HBMSCs were isolated from abandoned amniotic membrane samples and bone marrow. The coculture system was conducted using transwells, and H19 level was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). The mechanism was further verified. We here discovered that osteogenesis of HBMSCs was induced by HAMSCs, while H19 level in HAMSCs was increased during coculturing. H19 had no significant effect on the proliferative behaviors of HBMSCs, while its overexpression of H19 in HAMSCs led to the upregulated osteogenesis of HBMSCs in vivo and in vitro; whereas its knockdown reversed these effects. Mechanistically, H19 promoted miR-675 expression and contributed to the competitively bounding of miR-675 and Adenomatous polyposis coli (APC), thus significantly activating the Wnt/beta-catenin pathway. The results suggested that HAMSCs promote osteogenic differentiation of HBMSCs via H19/miR-675/APC pathway, and supply a potential target for the therapeutic treatment of bone-destructive diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available