4.6 Article

Theoretical bioreactor design to perform microbial mining activities on mars

Journal

ACTA ASTRONAUTICA
Volume 170, Issue -, Pages 354-364

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actaastro.2020.01.036

Keywords

ISRU; Bioreactor; Iron; Space exploration; Biomining; Algae

Funding

  1. Spaceship EAC initiative
  2. Netherlands Organization for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program

Ask authors/readers for more resources

Transporting materials from Earth to Mars is a significant logistical constraint on mission design. Thus, a sustained settlement will be enhanced if it can perform elemental extraction and utilization in situ. In this study, all requirements to test a novel, biological approach for in situ resource utilization (ISRU) are conceptualized. We present designs for two bioreactor systems to be incorporated in a Mars habitat. The first system is a standard algae bioreactor which produces oxygen and biomass. The second bioreactor is capable of taking in Martian regolith and extracting enhanced iron ores from it via biological processes. Additionally, we propose the use of the leftover iron-poor but biomass rich material in a plant compartment. The multiple, different compartments feed into each other, creating an interconnected process enhancing self-sufficiency. In this paper, computational fluid dynamics of mixing behavior under reduced gravity, a breakdown of the process flow for a biological ISRU approach and exploratory in silico evaluation of the feasibility are presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available