4.7 Article

Fabrication of poly(vinyl alcohol)-Carrageenan scaffolds for cryopreservation: Effect of composition on cell viability

Journal

CARBOHYDRATE POLYMERS
Volume 147, Issue -, Pages 509-516

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2016.04.027

Keywords

Scaffolds; Biodegradable; Biocompatible; Cell attachment; Cryopreservation

Ask authors/readers for more resources

The present investigation reports the fabrication of three dimensional (3D), interconnected, highly porous, biodegradable scaffolds using freeze-gelation technique. The hydrogels prepared with different ratios (5:5, 6:4, 7:3, 8:2 and 9:1) of poly(vinyl alcohol) (PVA) and Carrageenan (Car) was lyophilized to obtain their respective scaffolds. The PVA-Car scaffolds were further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The prepared scaffolds were found to be biodegradable and highly compatible with hemoglobin. Further, normal keratinocyte (HaCaT) and osteosarcoma (Saos-2) cells seeded on PVA-Car scaffolds were cryopreserved for 15 days and their viability was checked at regular interval of 3 days (0, 3, 6, 9, 12, 15 days) through MTT assay and fluorescence microscopy. Overall, the collective results indicate the scaffold constructs with 7:3 and 8:2 PVA-Car ratios possess ideal characteristics for tissue engineering applications and for long term cryopreservation of cells. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available