4.7 Article

Gut Microbiota Dysbiosis Is Associated with Altered Bile Acid Metabolism in Infantile Cholestasis

Journal

MSYSTEMS
Volume 4, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/mSystems.00463-19

Keywords

bile acids; cholestatic jaundice; dysbiosis; gut microbiota; infants

Categories

Funding

  1. National Natural Science Foundation of China [81870373, 81500449]
  2. Natural Science Foundation of Shanghai [16ZR1428700]
  3. Shanghai Hospital Development Center New Frontier Technology Joint Research Project [SHDC12017115]
  4. Shanghai Municipal Commission of Health and Family Planning Key Project [2017ZZ02019]

Ask authors/readers for more resources

The co-occurrence of gut microbiota dysbiosis and bile acid (BA) metabolism alteration has been reported in several human liver diseases. However, the gut microbiota dysbiosis in infantile cholestatic jaundice (CJ) and the linkage between gut bacterial changes and alterations of BA metabolism have not been determined. To address this question, we performed 16S rRNA gene sequencing to determine the alterations in the gut microbiota of infants with CJ, and assessed their association with the fecal levels of primary and secondary BAs. Our data reveal that CJ infants show marked declines in the fecal levels of primary BAs and most secondary BAs. A decreased ratio of cholic acid (CA)/chenodeoxycholic acid (CDCA) in infants with CJ indicated a shift in BA synthesis from the primary pathway to the alternative BA synthesis pathway. The bacterial taxa enriched in infants with CJ corresponded to the genera Clostridium, Gemella, Streptococcus, and Veillonella and the family Enterobacteriaceae and were negatively correlated with the fecal BA level and the CDCA/CA ratio but positively correlated with the serological indexes of impaired liver function. An increased ratio of deoxycholic acid (DCA)/CA was observed in a proportion of infants with CJ. The bacteria depleted in infants with CJ, including Bifidobacterium and Faecalibacterium prausnitzii, were positively and negatively correlated with the fecal levels of BAs and the serological markers of impaired liver function, respectively. In conclusion, the reduced concentration of BAs in the gut of infants with CJ is correlated with gut microbiota dysbiosis. The altered gut microbiota of infants with CJ likely upregulates the conversion from primary to secondary BAs. IMPORTANCE Liver health, fecal bile acid (BA) concentrations, and gut microbiota composition are closely connected. BAs and the microbiome influence each other in the gut, where bacteria modify the BA profile, while intestinal BAs regulate the growth of commensal bacteria, maintain the barrier integrity, and modulate the immune system. Previous studies have found that the co-occurrence of gut microbiota dysbiosis and BA metabolism alteration is present in many human liver diseases. Our study is the first to assess the gut microbiota composition in infantile cholestatic jaundice (CJ) and elucidate the linkage between gut bacterial changes and alterations of BA metabolism. We observed reduced levels of primary BAs and most secondary BAs in infants with CJ. The reduced concentration of fecal BAs in infantile CJ was associated with the overgrowth of gut bacteria with a pathogenic potential and the depletion of those with a potential benefit. The altered gut microbiota of infants with CJ likely upregulates the conversion from primary to secondary BAs. Our study provides a new perspective on potential targets for gut microbiota intervention directed at the management of infantile CJ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available