4.2 Article Proceedings Paper

Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet

Journal

APPLIED NANOSCIENCE
Volume 10, Issue 8, Pages 3001-3009

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-019-01215-x

Keywords

Oldroyd-B fluid; Von Karman swirling flow; Nanofluid; Heat sink source

Ask authors/readers for more resources

Here, the main purpose of our current research work is to analyze the aspects of buoyancy force on viscoelastic (second grade fluid) magnetized nanofluid. Features of Brownian moment, viscous dissipation and thermophoretic aspects are introduced in the formulation of the problem. More specifically, the non-dimensionalization process is adopted to reduce governing system of equation (PDE) into self-similar form (ODE). Optimal homotopy analysis method (OHAM) is employed on ODE to analyze the behavior of the viscoelastic magnetized nanofluid. Moreover, comprehensive discussion related to arising physical parameters of viscoelastic liquids vs significant profiles is presented in this work. Quantities of physical interest such as Sherwood and Nusselt numbers are presented in tabular form. It has been observed that larger values of rise in the values of viscoelastic parameter (second grade fluid) results in an increment in temperature distribution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Mechanical

Heat enhancement analysis of the hybridized micropolar nanofluid with Cattaneo-Christov and stratification effects

Shafiq Ahmad, Sohail Nadeem, Muhammad Naveed Khan

Summary: This article examines the steady bio-convective hybridized micropolar nanofluid flow with stratification conditions above a vertical exponentially stretching surface. The study found that the increase in solid volume fraction leads to a decrease in velocity near the boundary and an increase away from the boundary. Furthermore, increasing the Peclet number, microorganism stratification parameters, and bio-convection Schmidt number results in a decrease in microbial distribution.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE (2022)

Article Chemistry, Inorganic & Nuclear

Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible light

Chenggang Kuang, Ping Tan, Mohsin Javed, Hafiza Humaira Khushi, Sohail Nadeem, Shahid Iqbal, Fwzah H. Alshammari, Mashael D. Alqahtani, Hashem O. Alsaab, Nasser S. Awwad, Hala A. Ibrahium, Guocong Liu, Toheed Akhter, Abdul Rauf, Hamid Raza

Summary: This paper focuses on the synthesis of sulfur-doped reduced graphene oxide/NiS2 nanocomposites for efficient dye degradation through photocatalysis under solar irradiation. The nanocomposites show high efficiency in removing dyes, and can be reused multiple times. Additionally, they have antibacterial effects and can be used for water purification.

INORGANIC CHEMISTRY COMMUNICATIONS (2022)

Article Engineering, Multidisciplinary

Scrutinization of MHD stagnation point flow in hybrid nanofluid based on the extended version of Yamada-Ota and Xue models

Bushra Ishtiaq, Ahmed. M. Zidan, Sohail Nadeem, Mohammed Kbiri Alaoui

Summary: This article presents a comparative study of magnetohydrodynamics stagnant point flow in hybrid nanofluid using the extended versions of the Yamada-Ota model and Xue model. The study considers a time-dependent and thermally radiative two-dimensional flow with a stretchable/shrinking permeable sheet. The hybrid nanofluid is formulated by suspending Aluminum Oxide Al2O3 and Copper Cu nanoparticles in water. The nonlinear dimensionless system of ordinary differential equations is solved numerically using the bvp4c methodology. The study finds that the heat transfer rate is higher in the Yamada-Ota model compared to the Xue model, and increasing the stretching parameter enhances the velocity field but deteriorates the temperature distribution.

AIN SHAMS ENGINEERING JOURNAL (2023)

Article Mathematics, Applied

Effects of radiation and heat generation for non-Newtonian fluid flow over slendering stretching sheet: Numerically

Nadeem Abbas, Sohail Nadeem, Wasfi Shatanawi

Summary: This study presents a numerical analysis of MHD 3D second grade fluid over slendering stretching sheet, with considerations of heat generation and thermal radiation impacts. The problem is mathematically stated as PDEs and transformed to nonlinear ODEs using appropriate similarity variables. The solutions are computed using MATLAB bvp4c function and the impacts of involving parameters on velocity and temperature are analyzed. The results show the effects of various parameters on skin friction and Nusselt number.

ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK (2023)

Article Mathematics, Applied

Physiological peristaltic flow of Jeffrey fluid inside an elliptic cross section with heat and mass transfer: Exact solutions through Polynomial solution technique

Sohail Nadeem, Salman Akhtar, Nevzat Akkurt, Anber Saleem, Shahah Almutairi, Hassan Ali Ghazwani

Summary: This study mathematically investigates the heat and mass transfer during the peristaltic flow of a non-Newtonian Jeffrey fluid inside an elliptic cross-section duct. The analysis considers constant heat absorption and provides a descriptive assessment of the heat and mass transfer. Exact solutions are obtained using a polynomial solution technique for the dimensionless partial differential equations in the problem. A purposeful graphical assessment is provided for the final mathematical results. Velocity and temperature profiles reach their highest values in the core region of the duct and gradually decrease towards the duct boundaries.

ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK (2023)

Article Green & Sustainable Science & Technology

Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials

Wajad Ulfat, Ayesha Mohyuddin, Muhammad Amjad, Tonni Agustiono Kurniawan, Beenish Mujahid, Sohail Nadeem, Mohsin Javed, Adnan Amjad, Abdul Qayyum Ashraf, Mohd Hafiz Dzarfan Othman, Sadaful Hassan, Muhammad Arif

Summary: This study developed a thermal insulation composite material using buffing dust-laden tanning waste mixed with polystyrene and a blowing agent, aiming to promote resource recovery and a circular economy. The composite material exhibited good thermal conductivity, compression strength, density, and water absorption compared to conventional insulation panels. The addition of buffing dust reduced the thermal conductivity of polystyrene by 10%. The composite material also showed thermal stability and the presence of functional groups. Overall, this work not only solved energy consumption issues but also contributed to environmental protection and air pollution reduction through recycling and reusing buffing dust waste as thermal insulation material.

SUSTAINABILITY (2023)

Article Physics, Multidisciplinary

Exact analytical solutions of stagnation point flow over a heated stretching cylinder: A phase flow nanofluid model

Mirza Naveed Jahangeer Baig, Nadeem Salamat, Faisal Z. Duraihem, Salman Akhtar, Sohail Nadeem, Jehad Alzabut, Salman Saleem

Summary: This study mathematically models the stagnation point flow over a heated stretching cylinder using the phase flow approach. The interaction between impinging stagnation flow and flow due to the stretching surface of the cylinder is thoroughly interpreted. Exact analytical solutions are computed and evaluated graphically. Heat transport analysis and Nusselt number interpretation are incorporated. The results show a dominant impinging stagnation flow for higher oncoming flow pressure and lower stretching velocity of the cylinder.

CHINESE JOURNAL OF PHYSICS (2023)

Article Physics, Applied

Entropy optimized flow of hybrid nanofluid with partial slip boundary effects and induced magnetic field

Sohail Nadeem, Bushra Ishtiaq, Nevzat Akkurt, Hassan Ali Ghazwani

Summary: This study focuses on the entropy analysis of a hybrid nanofluid in stagnant point flow. Nonlinear dimensionless ordinary differential equations are obtained through appropriate similarity transformations. The results show that the mixed convection parameter has a significant impact on the velocity field, entropy generation, and induced magnetic field, and both entropy and heat transfer rate increase with the increase of mixed convection parameter.

INTERNATIONAL JOURNAL OF MODERN PHYSICS B (2023)

Article Engineering, Multidisciplinary

Modeling and numerical simulation of non-Newtonian arterial blood flow for mild to severe stenosis

Sohail Nadeem, Shahbaz Ali, Nevzat Akkurt, Mohamed Bechir Ben Hamida, Shahah Almutairi, Hassan Ali Ghazwani, Sayed M. Eldin, Zareen A. Khan, A. S. Al-Shafay

Summary: This paper presents a comprehensive study on the mathematical modelling and numerical simulation of non-Newtonian blood flow in an idealized stenosed artery. The results show that the non-Newtonian nature of the fluid model significantly influences flow dynamics, with a greater degree of stenosis leading to higher velocity and pressure drop. Wall shear is substantially larger in stenotic passages, and the severity of stenosis is directly related to this increasing behavior.

ALEXANDRIA ENGINEERING JOURNAL (2023)

Article Thermodynamics

Numerical investigation of the influence of hybrid nano-fluid on heat transfer in semi-annular channel

Sohail Nadeem, Shahbaz Ali, Jehad Alzabut, Mohamed Bechir Ben Hamida, Sayed M. Eldin

Summary: This study investigates the influence of hybrid nano-fluid on heat transport in a semi-annular channel using numerical methods. The hybrid nano-fluid consists of a liquid water with a suspension of SWCNT and MWCNT. Constant heat fluxes are applied to the channel walls. The finite volume approach is used to solve the governing equations. The results show that heat transport decreases as the volume fraction of MWCNT increases. The heat transfer from the walls to the fluid is affected by the curvature of the walls. The study provides velocity contours, isotherms, and local Nusselt number distributions for certain volume fractions of nanoparticles. It is discovered that walls with smaller curvature have stronger convection heat transfer. The pressure increases with the increase of nanoparticle volume percentage.

CASE STUDIES IN THERMAL ENGINEERING (2023)

Article Thermodynamics

FEM-based numerical solutions for mixed convection MHD flow of fluid inside the square cavity having sinusoidal walls

S. Nadeem, R. Akber, H. A. Ghazwani, J. Alzabut

Summary: This study examines the behavior of steady and incompressible magnetohydrodynamics fluid flow with sinusoidal walls in a square cavity. The finite element method is used to numerically model the flow and heat transfer, resulting in temperature and velocity profiles. The study finds that the temperature and velocity exhibit good convergence for various parameter values. The significant impact of heat transfer rate on the results is also discussed.

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS (2023)

Article Materials Science, Multidisciplinary

Unsteady magnetized flow of micropolar fluid with prescribed thermal conditions subject to different geometries

S. Nadeem, Bushra Ishtiaq, Jehad Alzabut, Hassan A. Ghazwani, Ahmad M. Hassan

Summary: This study compares the time-dependent flow of a micropolar fluid between a linear stretching sheet and an exponential stretching sheet. It is found that the exponential stretching sheet provides more consequential results compared to the linear stretching sheet. Additionally, the material parameter shows an increase in the velocity field for both types of sheets.

RESULTS IN PHYSICS (2023)

Article Materials Science, Multidisciplinary

Numerical analysis of Magnetohydrodynamic convection heat flow in an enclosure

Jehad Alzabut, Sohail Nadeem, Sumaira Noor, Sayed M. Eldin

Summary: This article investigates the modeling and numerical simulation of Magnetohydrodynamic (MHD) buoyancy driven convection flow in a differentially heated, square enclosure. Numerical solutions are computed for different values of Rayleigh number ranging 103 < Ra < 107 and Hartmann number ranging 0 < Ha < 40. Comportment of MHD free convection heat flow from transient to steady state is numerically examined for a period of 0 to 1 s. It is seen that with increasing values of Rayleigh number there is increase in local Nusselt number distribution on heated side of the cavity, while velocity distribution in the flow domain decreases with increasing Hartmann number.

RESULTS IN PHYSICS (2023)

Article Thermodynamics

Three parametric Prabhakar fractional derivative-based thermal analysis of Brinkman hybrid nanofluid flow over exponentially heated plate

Sohail Nadeem, Bushra Ishtiaq, Jehad Alzabut, Sayed M. Eldin

Summary: Fractional calculus has various applications in different fields, including biology, physics, oscillation, wave propagation, and viscoelastic dynamics. This study focuses on the fractional derivative analysis of a Brinkman hybrid nanofluid with an inclined magnetic field using the Prabhakar fractional derivative and the Mittag-Leffler function. The effects of exponential heating and a vertical plate moving with exponential velocity are considered in the analysis. The results show that the fractional constraints lead to a decrease in both temperature and velocity fields.

CASE STUDIES IN THERMAL ENGINEERING (2023)

Article Business, Finance

The impact of COVID-19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe

Muneeb Ahmad, Yousaf Ali Khan, Chonghui Jiang, Syed Jawad Haider Kazmi, Syed Zaheer Abbas

Summary: Unemployment is a major issue for both developed and developing nations, and the coronavirus has had an impact on the unemployment rate. Accurately predicting the unemployment rate is crucial for policymakers, and a hybrid approach using linear and non-linear models showed promising results. The study found that the unemployment rate will increase in the coming years due to COVID-19, and it will take at least 5 years to overcome its impact.

INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS (2023)

No Data Available