4.5 Article

Microstructural Evolution and Short-Term Creep Rupture of the Simulated HAZ in T92 Steel Normalized at Different Temperatures

Journal

METALS
Volume 9, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/met9121310

Keywords

T92; thermal simulation; heat-affected zone; creep

Funding

  1. Ministry of Science and Technology of the Republic of China [MOST 106-2221-E-019-060-MY3]

Ask authors/readers for more resources

T92 steel tubes have been widely applied in advanced supercritical boilers to replace Gr.91 tubes. Simulated samples with microstructures similar to those present in the heat-affected zone (HAZ) of a T92 steel weld were subjected to short-term creep tests in the study. T92 steel tubes were normalized at either 1213 K (L) or 1333 K (H) for 1 h, followed by tempering (T) at 1033 K for 2 h. After the normalizing and tempering treatments, the HT samples comprised finer precipitates but in greater numbers along the prior austenite grain boundaries (PAGBs) and martensite lath boundaries, as compared with those of the LT samples. The HAZ microstructures in the T92 steel welds were simulated by using an infrared heating system, which included over-tempering (OT, below A(C1)) and partial transformation (PT, slightly below A(C3)) zones. Martensite laths in the OT sample were more likely to be replaced by numerous cellular structures or subgrains together with spherodized carbides mainly located at the lath and austenite grain boundaries. Furthermore, coarser but fewer carbides were found along the refined lath and grain boundaries in the PT samples, in comparison with other samples in each group. Short-term creep tests showed that the PT samples were more likely to fracture than other samples in each group. Moreover, under the same testing conditions, the microstructures of T92 steel were more stable and resistant to degradation than those of T91 steel after welding or loading at elevated temperatures. Such events were responsible for higher creep resistance of the simulated T92 samples than that of the simulated T91 samples under the same creep-rupture conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available