4.5 Article

High Entropy Alloys: Ready to Set Sail?

Journal

METALS
Volume 10, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/met10020194

Keywords

serrated flow; thermal coarsening; actuators; phase transformation; nanoporous metals and alloys

Funding

  1. Applied Physics-Materials Science group of the Zernike Institute for Advanced Materials of the University of Groningen, the Netherlands

Ask authors/readers for more resources

Over the past decade, high entropy alloys (HEAs) have transcended the frontiers of material development in terms of their unprecedented structural and functional properties compared to their counterpart conventional alloys. The possibility to explore a vast compositional space further renders this area of research extremely promising in the near future for discovering society-changing materials. The introduction of HEAs has also brought forth a paradigm shift in the existing knowledge about material design and development. It is in this regard that a fundamental understanding of the metal physics of these alloys is critical in propelling mechanism-based HEA design. The current paper highlights some of the critical viewpoints that need greater attention in the future with respect to designing mechanically and functionally advanced materials. In particular, the interplay of large compositional gradients and defect topologies in these alloys and their corresponding impact on overall mechanical response are highlighted. From the point of view of functional response, such chemistry vis-a-vis topology correlations are extended to novel class of nano-porous HEAs that beat thermal coarsening effects despite a high surface to volume ratio owing to retarded diffusion kinetics. Recommendations on material design with regards to their potential use in diverse applications such as energy storage, actuators, and as piezoelectrics are additionally considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available