4.6 Article

Metal-Free Enhanced Photocatalytic Activation of Dioxygen by g-C3N4 Doped with Abundant Oxygen-Containing Functional Groups for Selective N-Deethylation of Rhodamine B

Journal

CATALYSTS
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/catal10010006

Keywords

photocatalysis; oxygen doped g-C3N4; activation of dioxygen; superoxide radicals; selective N-deethylation of rhodamine B

Funding

  1. Fundamental Research Funds for the Central Universities [CZT19005]
  2. Natural Science Foundation of Hubei Province of China [2018CFB623]
  3. National Student Innovation Training Program [GCX1935]

Ask authors/readers for more resources

To develop highly efficient heterogeneous photocatalysts for the activation of dissolved oxygen is very interesting in the field of green degradation of organic pollutants. In the paper, oxygen atom doped g-C3N4 (O-g-C3N4) was prepared via a facile chemical oxidation of g-C3N4 by peroxymonosulfate. X-ray photoelectron spectroscopy analysis suggests the oxidative treatment of g-C3N4 by peroxymonosulfate evidently increased atomic percentage of oxygen on O-g-C3N4 surface to 6.9% as compared with 1.8% for g-C3N4. Meanwhile, the doped oxygen atom mainly existed as carbonyl and carboxyl groups. Optical characterization indicates the introduction of oxygen improved the response of O-g-C3N4 to visible light, and more obviously, separation of photo-generated h(+)-e(-). 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) probe measurement indicates the formation of O-2(center dot-) was dramatically enhanced through activation of dioxygen by photo-generated electrons in the O-g-C3N4 photocatalytic system. Through high performance liquid chromatography (HPLC) and Liquid chromatography-mass spectrometry (LC-MS) analysis, it was found rhodamine B (RhB) photocatalytic degradation by O-g-C3N4 followed step by step N-deethylation reaction pathways induced by the formed O-2(center dot-), rather than the non-selective decomposition of the chromophore in RhB by other radicals, such as hydroxyl radicals. This study provides a facile method to develop oxygen atom doped g-C3N4 photocatalyst, and also clarifies its photocatalytic activation mechanism of molecular oxygen for N-deethylation reaction of RhB.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available