4.6 Article

Residential Energy-Related CO2 Emissions in China's Less Developed Regions: A Case Study of Jiangxi

Journal

SUSTAINABILITY
Volume 12, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/su12052000

Keywords

residential energy-related CO2 emissions; less developed regions; urban and rural regions; LMDI; Tapio decoupling; Jiangxi province

Funding

  1. Chinese National Science Foundation [71473113]
  2. Research Project of Humanities and Social Sciences in Jiangxi's Universities [GL19225]

Ask authors/readers for more resources

The residential sector is the second-largest consumer of energy in China. However, little attention has been paid to reducing the residential CO2 emissions of China's less developed or undeveloped regions. Taking Jiangxi as a case study, this paper thus aims at fully analyzing the difference of the residential energy-related CO2 emissions between urban and rural regions based on the Log-Mean Divisia Index (LMDI) and Tapio decoupling model. The main results are showed as follows: (1) Since 2008, residential energy-related CO2 emissions have increased rapidly in both urban and rural Jiangxi. From 2000 to 2017, the residential energy-related CO2 emissions per capita in rural regions rapidly increased and exceeded that in urban regions after 2015. Furthermore, the residential energy structures had become multiple in both urban and rural regions, but rural regions still had room to optimize its energy structure. (2) Over the study period, consumption expenditure per capita played the dominant role in increasing the residential energy-related CO2 emissions in both urban and rural regions, followed by energy demand and energy structure. Energy price had the most important effect on decreasing the urban and rural residential energy-related CO2 emissions, followed by the carbon emission coefficient. However, urbanization increased the urban residential energy-related CO2 emissions but decreased the CO2 emissions in rural regions. Population made marginal and the most stable contribution to increase the residential energy-related CO2 emissions both in urban and rural regions. (3) Overall, the decoupling status showed the weak decoupling (0.1) and expansive negative decoupling (1.21) in urban and rural regions, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available