4.7 Article

Natural Selection Towards Wild-Type in Composite Cross Populations of Winter Wheat

Journal

FRONTIERS IN PLANT SCIENCE
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2019.01757

Keywords

cropping system; evolution; genetic diversity; natural selection; plant height

Categories

Funding

  1. LINK scheme
  2. UKs Department of Environment Food and Rural Affairs (Defra)
  3. Biotechnology and Biological Sciences Research Council (BBSRC)
  4. Agriculture and Horticulture Development Board (AHDB)
  5. [LK0999]
  6. BBSRC [BBS/E/J/000PR9781, BBS/E/J/000CA358, BBS/E/J/000PR9779] Funding Source: UKRI

Ask authors/readers for more resources

Most of our crops are grown in monoculture with single genotypes grown over wide acreage. An alternative approach, where segregating populations are used as crops, is an exciting possibility, but outcomes of natural selection upon this type of crop are not well understood. We tracked allelic frequency changes in evolving composite cross populations of wheat grown over 10 generations under organic and conventional farming. At three generations, each population was genotyped with 19 SSR and 8 SNP markers. The latter were diagnostic for major functional genes. Gene diversity was constant at SSR markers but decreased over time for SNP markers. Population differentiation between the four locations could not be detected, suggesting that organic vs. non-organic crop management did not drive allele frequency changes. However, we did see changes for genes controlling plant height and phenology in all populations independently and consistently. We interpret these changes as the result of a consistent natural selection towards wild-type. Independent selection for alleles that are associated with plant height suggests that competition for light was central, resulting in the predominance of stronger intraspecific competitors, and highlighting a potential trade-off between individual and population performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available