4.6 Article

Nonlinear Wavefront Control by Geometric-Phase Dielectric Metasurfaces: Influence of Mode Field and Rotational Symmetry

Journal

ADVANCED OPTICAL MATERIALS
Volume 8, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.201902050

Keywords

geometric-phases; holograms; metasurfaces; nonlinear optics

Funding

  1. European Union's Horizon 2020 research and innovation program [724306]
  2. Deutsche Forschungsgemeinschaft [DFG TRR142/C05]
  3. Beijing Outstanding Young Scientist Program [BJJWZYJH01201910007022]
  4. National Natural Science Foundation of China program [61775019]

Ask authors/readers for more resources

Nonlinear Pancharatnam-Berry phase metasurfaces facilitate the nontrivial phase modulation for frequency conversion processes by leveraging photon-spin dependent nonlinear geometric-phases. However, plasmonic metasurfaces show some severe limitation for nonlinear frequency conversion due to the intrinsic high ohmic loss and low damage threshold of plasmonic nanostructures. Here, the nonlinear geometric-phases associated with the third-harmonic generation process occurring in all-dielectric metasurfaces is studied systematically, which are composed of silicon nanofins with different in-plane rotational symmetries. It is found that the wave coupling among different field components of the resonant fundamental field gives rise to the appearance of different nonlinear geometric-phases of the generated third-harmonic signals. The experimental observations of the nonlinear beam steering and nonlinear holography realized in this work by all-dielectric geometric-phase metasurfaces are well explained with the developed theory. This work offers a new physical picture to understand the nonlinear optical process occurring at nanoscale dielectric resonators and will help in the design of nonlinear metasurfaces with tailored phase properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available