4.7 Article

A Cloud Detection Approach Based on Hybrid Multispectral Features with Dynamic Thresholds for GF-1 Remote Sensing Images

Journal

REMOTE SENSING
Volume 12, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/rs12030450

Keywords

cloud detection; hybrid multispectral features; dynamic thresholds; GF-1 images

Funding

  1. National Natural Science Foundation of China [41771104]

Ask authors/readers for more resources

Nowadays, GF-1 (GF is the acronym for GaoFen which means high-resolution in Chinese) remote sensing images are widely utilized in agriculture because of their high spatio-temporal resolution and free availability. However, due to the transferrable rationale of optical satellites, the GF-1 remote sensing images are inevitably impacted by clouds, which leads to a lack of ground object's information of crop areas and adds noises to research datasets. Therefore, it is crucial to efficiently detect the cloud pixel of GF-1 imagery of crop areas with powerful performance both in time consumption and accuracy when it comes to large-scale agricultural processing and application. To solve the above problems, this paper proposed a cloud detection approach based on hybrid multispectral features (HMF) with dynamic thresholds. This approach combined three spectral features, namely the Normalized Difference Vegetation Index (NDVI), WHITENESS and the Haze-Optimized Transformation (HOT), to detect the cloud pixels, which can take advantage of the hybrid Multispectral Features. Meanwhile, in order to meet the variety of the threshold values in different seasons, a dynamic threshold adjustment method was adopted, which builds a relationship between the features and a solar altitude angle to acquire a group of specific thresholds for an image. With the test of GF-1 remote sensing datasets and comparative trials with Random Forest (RF), the results show that the method proposed in this paper not only has high accuracy, but also has advantages in terms of time consumption. The average accuracy of cloud detection can reach 90.8% and time consumption for each GF-1 imagery can reach to 5 min, which has been reduced by 83.27% compared with RF method. Therefore, the approach presented in this work could serve as a reference for those who are interested in the cloud detection of remote sensing images.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available