4.7 Article

Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites

Journal

POLYMERS
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/polym12020426

Keywords

polymer nanocomposites; thermal conductivity; electrical properties; silver nanoparticles; boron nitride nanosheets; PACS

Funding

  1. National Key Research and Development Plan Smart Grid Technology and Equipment [2017 YFB0903805]
  2. Faculty Research and Professional Development Fund at North Carolina State University

Ask authors/readers for more resources

Polymer composites, with both high thermal conductivity and high electrical insulation strength, are desirable for power equipment and electronic devices, to sustain increasingly high power density and heat flux. However, conventional methods to synthesize polymer composites with high thermal conductivity often degrade their insulation strength, or cause a significant increase in dielectric properties. In this work, we demonstrate epoxy nanocomposites embedded with silver nanoparticles (AgNPs), and modified boron nitride nanosheets (BNNSs), which have high thermal conductivity, high insulation strength, low permittivity, and low dielectric loss. Compared with neat epoxy, the composite with 25 vol% of binary nanofillers has a significant enhancement (similar to 10x) in thermal conductivity, which is twice of that filled with BNNSs only (similar to 5x), owing to the continuous heat transfer path among BNNSs enabled by AgNPs. An increase in the breakdown voltage is observed, which is attributed to BNNSs-restricted formation of AgNPs conducting channels that result in a lengthening of the breakdown path. Moreover, the effects of nanofillers on dielectric properties, and thermal simulated current of nanocomposites, are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available