4.7 Article

Flow Adversarial Networks: Flowrate Prediction for Gas-Liquid Multiphase Flows Across Different Domains

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2019.2905082

Keywords

Convolutional neural network (CNN); domain adaptation; domain adversarial network; flowrate prediction; multiphase flow; regression; transfer learning; venturi tube

Funding

  1. National Natural Science Foundation of China [61571252]

Ask authors/readers for more resources

The solution of how to accurately and timely predict the flowrate of gas-liquid mixtures is the key to help petroleum and other related industries to reduce costs, improve efficiency, and optimize management. Although numerous studies have been carried out over the past decades, the problem is still significantly challenging due to the complexity of multiphase flows. This paper attempts to seek new possibilities for multiphase flow measurement and novel application scenarios for state-of-the-art machine learning (ML) techniques. Convolutional neural networks (CNNs) are applied to predict the flowrate of multiphase flows for the first time and can achieve promising performance. In addition, considering the difference between data distributions of training and testing samples and its negative impact on prediction accuracy of the CNN models on testing samples, we propose flow adversarial networks (FANs) that can distill both domain-invariant and flowrate-discriminative features from the raw input. The method is evaluated on dynamic experimental data of different multiphase flows on different flow conditions and operating environments. The experimental results demonstrate that FANs can effectively prevent the accuracy degradation caused by the gap between training and testing samples and have better performance than state-of-the-art approaches in the flowrate prediction field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available