4.7 Article

Modeling the Effects of Global Change on Ecosystem Processes in a Tropical Rainforest

Journal

FORESTS
Volume 11, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/f11020213

Keywords

climate change; species effects; biogeochemical model; temperature; precipitation; tropical forests

Categories

Funding

  1. U.S. National Science Foundation [DEB 0703561, 0703420, 1119223, BE/CBC 0421178]
  2. US Department of Agriculture (USDA) UV-B Monitoring and Research Program, Colorado State University, under USDA National Institute of Food and Agriculture [2016-34263-25763]
  3. DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research) [DE-SC0018420]
  4. USDA Grass-Cast and DayCent modeling Coop agreements [58-3012-7-009, 58-5402-4-011]
  5. U. of Nebraska USDA Grass-Cast project [58-0111-18-018]
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [0703420] Funding Source: National Science Foundation

Ask authors/readers for more resources

Research Highlights: Ongoing land-use change and climate change in wet tropical forests can potentially drive shifts in tree species composition, representing a change in individual species within a functional group, tropical evergreen trees. The impacts on the global carbon cycle are potentially large, but unclear. We explored the differential effects of species within this functional group, in comparison with the effects of climate change, using the Century model as a research tool. Simulating effects of individual tree species on biome-level biogeochemical cycles constituted a novel application for Century. Background and Objectives: A unique, long-term, replicated field experiment containing five evergreen tree species in monodominant stands under similar environmental conditions in a Costa Rican wet forest provided data for model evaluation. Our objectives were to gain insights about this forest's biogeochemical cycles and effects of tree species within this functional group, in comparison with climate change. Materials and Methods: We calibrated Century, using long-term meteorological, soil, and plant data from the field-based experiment. In modeling experiments, we evaluated effects on forest biogeochemistry of eight plant traits that were both observed and modeled. Climate-change simulation experiments represented two climate-change aspects observed in this region. Results: Model calibration revealed that unmodeled soil processes would be required to sustain observed P budgets. In species-traits experiments, three separate plant traits (leaf death rate, leaf C:N, and allocation to fine roots) resulted in modeled biomass C stock changes of >50%, compared with a maximum 21% change in the climate-change experiments. Conclusions: Modeled ecosystem properties and processes in Century were sensitive to changes in plant traits and nutrient limitations to productivity. Realistic model output was attainable for some species, but unusual plant traits thwarted predictions for one species. Including more plant traits and soil processes could increase realism, but less-complex models provide an accessible means for exploring plant-soil-atmosphere interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available