4.5 Article

MicroRNA-195 Functions as a Tumor Suppressor by Directly Targeting Fatty Acid Synthase in Malignant Meningioma

Journal

WORLD NEUROSURGERY
Volume 136, Issue -, Pages E355-E364

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.wneu.2019.12.182

Keywords

Competing endogenous RNAs; FASN; Invasion; Malignant meningioma; MicroRNA; Proliferation

Funding

  1. National Natural Science Foundation of China [81472370]
  2. Natural Science Foundation of Beijing [J180005, 7192056]
  3. Outstanding Talent Training Projects Foundation of Beijing [2017000021469G261]

Ask authors/readers for more resources

OBJECTIVE: Meningiomas are among the most common primary intracranial tumors. Up to 20% of cases will show increased malignancy at histological examination (World Health Organization grade II or III). Effective pharmacotherapy, except for radiotherapy, is lacking. Therefore, it is necessary to study the pathogenesis of malignant meningioma to provide more treatment strategies. METHODS: RNA sequencing and micro-RNA (miRNA) microarray detection were applied to identify differentially expressed messenger RNAs (mRNAs) and miRNAs in benign and malignant meningioma. The miRDB and TargetScan databases were used to predict the potential interaction between miRNAs and mRNAs. A proliferation assay was used to evaluate the cell growth. A wound healing assay and Transwell assay were performed to assess the cell migration and invasion abilities, respectively. The interaction between miRNA and mRNA was identified using a luciferase reporter assay. RESULTS: We found fatty acid synthase (FASN) was significantly upregulated in malignant meningioma compared with benign meningioma. Knockdown of FASN significantly inhibited proliferation, migration, and invasion of IOMM-Lee cells. Moreover, miR-195 was verified to directly target FASN using a luciferase reporter assay. Upregulation of mill-195 also significantly inhibited proliferation, migration, and invasion of IOMM-Lee cells. Furthermore, we performed bioinformatics analysis to predict the competing endogenous RNAs (ceRNAs) and found that NUP210, SPIRE2, SLC7A1, and DMTN might function as ceRNAs of FASN by sponging miR-195 in meningioma. CONCLUSIONS: Our results have suggested a tumor suppressive role for miR-195 in the tumorigenesis and progression of malignant meningioma by targeting FASN. In addition, NUP210, SPIRE2, SLC7A1, and DMTN might act as ceRNAs to regulate FASN expression by sponging miR-195.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available