4.8 Article

Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway

Journal

NATURE COMMUNICATIONS
Volume 10, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-13542-2

Keywords

-

Funding

  1. Office of the Assistant Secretary of Defense for Health Affairs, through the Bone Marrow Failure Research Program-Idea Development Award [W81XWH-18-1-0265]
  2. Leukemia & Lymphoma Society (LLS) Translational Research Program [6581-20]
  3. NIH F32 Award [1F32CA203049]
  4. NIDDK Cooperative Center of Excellence in Hematology (CCEH) grant [U54 DK106846]
  5. Project Development Team within the ICTSI NIH/NCRR [UL1TR001108]
  6. [R01HL150624]
  7. [R56DK119524]
  8. [R56AG05250]

Ask authors/readers for more resources

Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available