4.6 Article

High-efficiency solar thermophotovoltaic system using a nanostructure-based selective emitter

Journal

SOLAR ENERGY
Volume 197, Issue -, Pages 538-545

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2020.01.029

Keywords

STPV; Blackbody; TPV cells; Nanostructure; Spectral control

Categories

Funding

  1. NASA Langley Professor program
  2. NSF IUCRC Center
  3. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy

Ask authors/readers for more resources

In this work, we present the design, fabrication, optimization, and experimental results of a high-efficiency planar solar thermophotovoltaic (STPV) system utilizing a micro-textured absorber and a nanostructure multi layer metal-dielectric coated selective emitter fabricated on a tungsten (W) substrate. Light absorptance of more than 90% was achieved at visible and near-infrared wavelengths using the microtextured absorbing surface. The nanostructure selective emitter consists of two thin-film optical coatings of silicon nitride (Si3N4) and a layer of W in between to increase the surface emissivity in spectral regimes matching the quantum efficiency of the thermophotovoltaic (TPV) cells. Gallium antimonide (GaSb)-based TPV cells are used in our STPV design. The experiment was conducted at different operating temperatures using a high-power continuous wave laser diode stack as a simulated source of concentrated incident radiation. Our experimental setup measured a maximum electrical output power density of 1.71 W/cm(2) at 1676 K STPV temperature, and the overall power conversion efficiency of 8.4% after normalizing the output power density to the emitter area. This is the highest STPV system efficiency reported so far for any experimental STPV device. The incident optical laser power on the absorber side was 131 W. This is equivalent to a solar concentration factor of similar to 2100, which is within the practical limit and readily achievable with Fresnel lens setup.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available