4.4 Article

Effects of small and large shear histories on multiple liquefaction properties of sand with initial static shear

Journal

SOILS AND FOUNDATIONS
Volume 59, Issue 6, Pages 2024-2035

Publisher

JAPANESE GEOTECHNICAL SOC
DOI: 10.1016/j.sandf.2019.11.001

Keywords

Reliquefaction; Induced anisotropy; Initial static shear stress; Shear history; Liquefaction

Funding

  1. JSPS KAKENHI [JP15H04036, JP18H01531, JP17J05565]

Ask authors/readers for more resources

It has been reported that soils belonging to slope grounds show different types of liquefaction behavior than those belonging to horizontal grounds. Some research has also revealed that liquefaction histories can significantly affect the shear behavior of sandy soils. However, the combined effects of the slope angle and the magnitude of past shear histories on the liquefaction properties of soils have not been studied comprehensively. Based on this background, several multiple liquefaction tests with initial static shear were conducted on Toyoura sand. In each of these tests, a single specimen was sheared several times up to small or large double amplitude shear strain under a constant volume condition using a specially designed stacked-ring shear apparatus. The behavior of the Toyoura sand observed in these tests was discussed considering various perspectives, such as the increase in relative density, the induced anisotropy, the change in liquefaction resistance, and the shear strain accumulation. The findings of this study established that shear histories of smaller magnitude had relatively less influence on densification and induced anisotropy than those of larger magnitude. Moreover, shear histories of smaller magnitude also resulted in the relatively higher liquefaction resistance of sand specimens against the next cyclic shear, while the opposite trend was observed in the case of specimens subjected to shear histories of larger magnitude. Finally, shear strain accumulated less easily in tests with small shear histories than in those with large shear histories. (C) 2019 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available