4.5 Article

SVD-based redundancy removal in 1-D CNNs for acoustic scene classification

Journal

PATTERN RECOGNITION LETTERS
Volume 131, Issue -, Pages 383-389

Publisher

ELSEVIER
DOI: 10.1016/j.patrec.2020.02.004

Keywords

Pruning; SoundNet; Embedding; Response matrix; Acoustic scene classification

Ask authors/readers for more resources

In this letter, we propose a concise feature representation framework for acoustic scene classification by pruning embeddings obtained from SoundNet, a deep convolutional neural network. We demonstrate that the feature maps generated at various layers of SoundNet have redundancy. The proposed singular value decomposition based method reduces the redundancy while relying on the assumption that useful feature maps produced by different classes lie along different directions. This leads to ignoring the feature maps that produce similar embeddings for different classes. In the context of using an ensemble of classifiers on the various layers of SoundNet, pruning the redundant feature maps leads to reduction in dimensionality and computational complexity. Our experiments on acoustic scene classification demonstrate that ignoring 73% of feature maps reduces the performance by less than 1% with 12.67% reduction in computational complexity. In addition to this, we also show that the proposed pruning framework can be utilized to remove filters in the SoundNet network architecture, with 13x lesser model storage requirement. Also, the number of parameters reduce from 28 million to 2 million with marginal degradation in performance. This small model obtained after applying the proposed pruning procedure is evaluated on different acoustic scene classification datasets, and shows excellent generalization ability. (c) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available