4.6 Article

A VIT-like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean

Journal

NEW PHYTOLOGIST
Volume 226, Issue 5, Pages 1413-1428

Publisher

WILEY
DOI: 10.1111/nph.16506

Keywords

iron; nodule; soybean; symbiosome; transporter; VTL

Categories

Funding

  1. National Key Research and Development Program of China [2016YFD0100401]
  2. National Natural Science Foundation of China [31872171]

Ask authors/readers for more resources

Effective legume-rhizobia symbiosis depends on efficient nutrient exchange. Rhizobia need to synthesize iron-containing proteins for symbiotic nitrogen fixation (SNF) in nodules, which depends on host plant-mediated iron uptake into the symbiosome. We functionally investigated a pair of vacuolar iron transporter like (VTL) genes, GmVTL1a/b, in soybean (Glycine max) and evaluated their contributions to SNF, including investigations of gene expression patterns, subcellular localization, and mutant phenotypes. Though both GmVTL1a/b genes were specifically expressed in the fixation zone of the nodule, GmVTL1a was the lone member to be localized at the tonoplast of tobacco protoplasts, and shown to facilitate ferrous iron transport in yeast. GmVTL1a targets the symbiosome in infected cells, as verified by in situ immunostaining. Two vtl1 knockout mutants had lower iron concentrations in nodule cell sap and peribacteroid units than in wild-type plants, suggesting that GmVTL1 knockout inhibited iron import into symbiosomes. Furthermore, GmVTL1 knockout minimally affected soybean growth under nonsymbiotic conditions, but dramatically impaired nodule development and SNF activity under nitrogen-limited and rhizobia-inoculation conditions, which eventually led to growth retardation. Taken together, these results demonstrate that GmVTL1a is indispensable for SNF in nodules as a transporter of ferrous iron from the infected root cell cytosol to the symbiosome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available