4.8 Article

Dynamic Local Strain in Graphene Generated by Surface Acoustic Waves

Journal

NANO LETTERS
Volume 20, Issue 1, Pages 402-409

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.9b04085

Keywords

Graphene; strain; surface acoustic wave; phonon modulation; Raman spectroscopy

Ask authors/readers for more resources

We experimentally demonstrate that the Raman-active optical phonon modes of single-layer graphene can be modulated by the dynamic local strain created by surface acoustic waves (SAWs). In particular, the dynamic strain field of the SAW is shown to induce a Raman scattering intensity variation as large as 15% and a phonon frequency shift of up to 10 cm(-1) for the G band, for instance, for an effective hydrostatic strain of 0.24% generated in single-layer graphene atop a LiNbO3 piezoelectric substrate with a SAW resonator operating at a frequency of similar to 400 MHz. Thus, we demonstrate that SAWs are powerful tools for modulating the optical and vibrational properties of supported graphene by means of the high-frequency localized deformations tailored by the acoustic transducers, which can also be extended to other 2D systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available