4.7 Article

Fault diagnosis of rolling bearings using weighted horizontal visibility graph and graph Fourier transform

Journal

MEASUREMENT
Volume 149, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2019.107036

Keywords

Fault diagnosis; Rolling bearing; Weighted horizontal visibility graph; Graph Fourier transform; Fault impulse component

Funding

  1. National Natural Science Foundation of China [51875182]

Ask authors/readers for more resources

Graph Fourier transform (GFT) has been proven to be an effective tool for impulse component extraction of rolling bearings, but its performance is closely related to the structure of underlying graph. Compared with the weighted path graph, the weighted horizontal visibility graph (WHVG) can reflect the dynamics characteristics of vibration signals better. When the fault bearing vibration signal is transformed into the WHVG, GFT can cluster most of the fault impulse component to the highest order range and has strong anti-interference ability. Based on WHVG and GFT, a novel fault diagnosis method for rolling bearings is proposed. In the proposed method, the graph spectrum coefficients in the highest order range are extracted to reconstruct the fault impulse component, and then the Hilbert envelope spectrum is used to diagnose the bearing fault. Simulation and experimental results demonstrate that the proposed fault diagnosis method for rolling bearings is noise tolerant and effective. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Interdisciplinary Applications

Rendering optimal design under various uncertainties A unified approach and application to brake instability study

Hui Lu, Kun Yang, Wen-bin Shangguan, Hui Yin, D. J. Yu

ENGINEERING COMPUTATIONS (2020)

Article Computer Science, Theory & Methods

Fuzzy dynamical system approach for a dual-parameter hybrid-order robust control design

Hui Yin, Ye-Hwa Chen, Dejie Yu

FUZZY SETS AND SYSTEMS (2020)

Article Engineering, Multidisciplinary

Intelligent acoustic-based fault diagnosis of roller bearings using a deep graph convolutional network

Dingcheng Zhang, Edward Stewart, Mani Entezami, Clive Roberts, Dejie Yu

MEASUREMENT (2020)

Article Engineering, Mechanical

Total variation on horizontal visibility graph and its application to rolling bearing fault diagnosis

Yiyuan Gao, Dejie Yu

MECHANISM AND MACHINE THEORY (2020)

Article Automation & Control Systems

Stackelberg-Theoretic Approach for Performance Improvement in Fuzzy Systems

Hui Yin, Ye-Hwa Chen, Dejie Yu

IEEE TRANSACTIONS ON CYBERNETICS (2020)

Article Physics, Applied

Enhanced broadband acoustic sensing in gradient coiled metamaterials

Tinggui Chen, Junrui Jiao, Dejie Yu

Summary: The GCM proposed in this study combines gradient and coiled structures to achieve enhanced broadband acoustic sensing, with the ability to amplify acoustic signals up to approximately 80 times over a wide frequency range. By coupling coiled structures, trapped and enhanced frequencies in the GCM can be reduced by nearly 43%. Experimental results demonstrate that GCM can enhance frequency-selective unknown signals and effectively recognize and recover harmonic signals from strong background noise.

JOURNAL OF PHYSICS D-APPLIED PHYSICS (2021)

Article Engineering, Multidisciplinary

Broadband acoustic enhancement and weak signals detection within a gradient acoustic-grating metamaterial

Tinggui Chen, Junrui Jiao, Dejie Yu

Summary: The study proposes a method based on the gradient acoustic-grating metamaterial (GAGM) for detecting harmonic and periodic impulse signals more easily. Numerical and experimental investigations demonstrate that GAGM achieves acoustic rainbow trapping to spatially separate different frequency components. This work opens up new vistas for weak signals detection in various areas.

MEASUREMENT (2021)

Article Physics, Applied

Microparticles separation using acoustic topological insulators

Hongqing Dai, Baizhan Xia, Dejie Yu

Summary: Acoustic topological insulators enable non-contact particle manipulations, such as microparticle trapping and separation. Based on the SSH model, we can separate particles of the same size and density.

APPLIED PHYSICS LETTERS (2021)

Article Engineering, Electrical & Electronic

Weak Signals Detection by Acoustic Metamaterials-Based Sensor

Tinggui Chen, Dejie Yu, Bo Wu, Baizhan Xia

Summary: A sensor based on acoustic metamaterials is proposed for detecting weak signals, utilizing a trapezoidal structure to enhance the acoustic pressure field and amplify pressure amplitudes by over 20 times around maximum gain frequencies, achieving broadband acoustic enhancement. Harmonic and periodic impulse signals are detected more easily, and experimental results show effective recovery of signals from background noise due to improved signal to noise ratios.

IEEE SENSORS JOURNAL (2021)

Article Automation & Control Systems

A Novel Method for Enhanced Demodulation of Bearing Fault Signals Based on Acoustic Metamaterials

Tinggui Chen, Dejie Yu

Summary: This article proposes a novel method to diagnose bearing faults using acoustic metamaterials, which enhances the resonance frequency band to extract fault features. Compared to conventional denoising techniques, this method shows superior performance in low signal to noise ratios.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2022)

Article Acoustics

Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing

Tinggui Chen, Junrui Jiao, Dejie Yu

Summary: The detection and localization of acoustic signals are important in many areas, but achieving both high sensitivity and high directivity in an acoustic system remains a challenge. This study proposes a structure that combines phononic crystal point defects with four-sided Helmholtz resonators to enhance acoustics and enable directional sensing. The proposed structure surpasses the detection limit of conventional acoustic sensing systems and provides a new method for developing coupled acoustic sensing devices.

JOURNAL OF SOUND AND VIBRATION (2022)

Article Physics, Applied

Synthetic gauge fields and Landau levels in acoustic Moire superlattices

Guiju Duan, Shengjie Zheng, Jie Zhang, Zihan Jiang, Xianfeng Man, Dejie Yu, Baizhan Xia

Summary: This study reports the realization of a synthetic gauge field in acoustic Moire superlattices consisting of two superimposed periodic phononic crystals with mismatched lattice constants. The symmetric and antisymmetric Landau levels and interface states are observed in the acoustic Moire superlattices with the help of the synthetic gauge field. Sound pressure field distributions of Landau levels are experimentally measured and consistent with full-wave simulations. This study provides a simple way to generate synthetic gauge fields in phononics and expands the avenues for manipulating sound waves that were previously inaccessible in traditional periodic acoustic systems.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

Acoustic enhancement and weak signal detection based on the space-coiling gradient acoustic grating

Yue Chu, Tinggui Chen, Dejie Yu

APPLIED PHYSICS EXPRESS (2020)

Article Computer Science, Artificial Intelligence

Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs

Yiyuan Gao, Dejie Yu

Summary: The study introduces an intelligent method using directed graphs for fault diagnosis, which improves diagnostic performance by constructing a directed and weighted k-nearest neighbor graph and measuring the similarity between samples using cosine distance. Experimental results show that the method is better than traditional convolutional neural networks and support vector machines in rolling bearing fault diagnosis.

ADVANCED ENGINEERING INFORMATICS (2021)

Article Engineering, Multidisciplinary

Non-contact method of thickness measurement for thin-walled rotary shell parts based on chromatic confocal sensor

Sicheng Jiao, Shixiang Wang, Minge Gao, Min Xu

Summary: This paper presents a non-contact method of thickness measurement for thin-walled rotary shell parts based on a chromatic confocal sensor. The method involves using a flip method to obtain surface profiles from both sides of the workpiece, measuring the decentration and tilt errors of the workpiece using a centering system, establishing a unified reference coordinate system, reconstructing the external and internal surface profiles, and calculating the thickness. Experimental results show that the method can accurately measure the thickness of a sapphire spherical shell workpiece and is consistent with measurements of other materials.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Refractive index sensing using MXene mediated surface plasmon resonance sensor in visible to near infrared regime

Rajeev Kumar, Sajal Agarwal, Sarika Pal, Alka Verma, Yogendra Kumar Prajapati

Summary: This study evaluated the performance of a CaF2-Ag-MXene-based surface plasmon resonance (SPR) sensor at different wavelengths. The results showed that the sensor achieved the maximum sensitivity at a wavelength of 532 nm, and higher sensitivities were obtained at shorter wavelengths at the expense of detection accuracy.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Performances evaluation and characterization of a novel design of capacitive sensors for in-flight oil-level monitoring aboard helicopters

Attilio Di Nisio, Gregorio Andria, Francesco Adamo, Daniel Lotano, Filippo Attivissimo

Summary: Capacitive sensing is a widely used technique for a variety of applications, including avionics. However, current industry standard Capacitive Level Sensors (CLSs) used in helicopters perform poorly in terms of sensitivity and dynamic characteristics. In this study, novel geometries were explored and three prototypes were built and tested. Experimental validation showed that the new design featuring a helicoidal slit along the external electrode of the cylindrical probe improved sensitivity, response time, and linearity.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

An effective monitoring method of dynamic compaction construction quality based on time series modeling

Kai Yang, Huiqin Wang, Ke Wang, Fengchen Chen

Summary: This paper proposes an effective measurement method for dynamic compaction construction based on time series model, which enables real-time monitoring and measurement of anomalies and important construction parameters through simulating motion state transformation and running time estimation.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Automatic detection and pixel-level quantification of surface microcracks in ceramics grinding: An exploration with Mask R-CNN and TransUNet

Hui Fu, Qinghua Song, Jixiang Gong, Liping Jiang, Zhanqiang Liu, Qiang Luan, Hongsheng Wang

Summary: An automatic detection and pixel-level quantification model based on joint Mask R-CNN and TransUNet is developed to accurately evaluate microcrack damage on the grinding surfaces of engineering ceramics. The model is effectively trained on actual micrograph image dataset using a joint training strategy. The proposed model achieves reliable automatic detection and fine segmentation of microcracks, and a skeleton-based quantification model is also proposed to provide comprehensive and precise measurements of microcrack size.

MEASUREMENT (2024)

Review Engineering, Multidisciplinary

A review of UAV integration in forensic civil engineering: From sensor technologies to geotechnical, structural and water infrastructure applications

Sang Yeob Kim, Da Yun Kwon, Arum Jang, Young K. Ju, Jong-Sub Lee, Seungkwan Hong

Summary: This paper reviews the categorization and applications of UAV sensors in forensic engineering, with a focus on geotechnical, structural, and water infrastructure fields. It discusses the advantages and disadvantages of sensors with different wavelengths and addresses the challenges of current UAV technology and recommendations for further research in forensic engineering.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Comparing Mobile and Aerial Laser Scanner point cloud data sets for automating the detection and delimitation procedure of safety-critical near-road slopes

Anton Nunez-Seoane, Joaquin Martinez-Sanchez, Erik Rua, Pedro Arias

Summary: This article compares the use of Mobile Laser Scanners (MLS) and Aerial Laser Scanners (ALS) for digitizing the road environment and detecting road slopes. The study found that ALS data and its corresponding algorithm achieved better detection and delimitation results compared to MLS. Measuring the road from a terrestrial perspective negatively impacted the detection process, while an aerial perspective allowed for scanning of the entire slope structure.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Utilizing gammatone filter coefficient to improve human mouth-click signal detection using a multi-phase correlation process

Nur Luqman Saleh, Aduwati Sali, Raja Syamsul Azmir Raja Abdullah, Sharifah M. Syed Ahmad, Jiun Terng Liew, Fazirulhisyam Hashim, Fairuz Abdullah, Nur Emileen Abdul Rashid

Summary: This study introduces an enhanced signal processing scheme for detecting mouth-click signals used by blind individuals. By utilizing additional band-pass filtering and other steps, the detection accuracy is improved. Experimental results using artificial signal data showed a 100% success rate in detecting obstacles. The emerging concepts in this research are expected to benefit radar and sonar system applications.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Magnetic noise analysis for small magnetically shielded room in different environmental magnetic fields

Jiqiang Tang, Shengjie Qiu, Lu Zhang, Jinji Sun, Xinxiu Zhou

Summary: This paper studies the magnetic noise level of a compact high-performance magnetically shielded room (MSR) under different operational conditions and establishes a quantitative model for magnetic noise calculation. Verification experiments show the effectiveness of the proposed method.

MEASUREMENT (2024)

Review Engineering, Multidisciplinary

Advancements in optical fiber sensors for in vivo applications - A review of sensors tested on living organisms

Krzysztof Bartnik, Marcin Koba, Mateusz Smietana

Summary: The demand for miniaturized sensors in the biomedical industry is increasing, and optical fiber sensors (OFSs) are gaining popularity due to their small size, flexibility, and biocompatibility. This study reviews various OFS designs tested in vivo and identifies future perspectives and challenges for OFS technology development from a user perspective.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Method for three-dimensional reconstruction of dynamic stereo vision based on line structured light using global optimization

Yue Wang, Lei Zhou, Zihao Li, Jun Wang, Xuangou Wu, Xiangjun Wang, Lei Hu

Summary: This paper presents a 3-D reconstruction method for dynamic stereo vision of metal surface based on line structured light, overcoming the limitation of the measurement range of static stereo vision. The proposed method uses joint calibration and global optimization to accurately reconstruct the 3-D coordinates of the line structured light fringe, improving the reconstruction accuracy.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Improved multi-order Vold-Kalman filter for order tracking analysis using split cosine and sine terms

Jaafar Alsalaet

Summary: Order tracking analysis is an effective tool for machinery fault diagnosis and operational modal analysis. This study presents a new formulation for the data equation of the second-generation Vold-Kalman filter, using separated cosine and sine kernels to minimize error and provide smoother envelopes. The proposed method achieves high accuracy even with small weighting factors.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Balanced multi-scale target score network for ceramic tile surface defect detection

Tonglei Cao, Kechen Song, Likun Xu, Hu Feng, Yunhui Yan, Jingbo Guo

Summary: This study constructs a high-resolution dataset for surface defects in ceramic tiles and addresses the scale and quantity differences in defect distribution. An improved approach is proposed by introducing a content-aware feature recombination method and a dynamic attention mechanism. Experimental results demonstrate the superior accuracy and efficiency of the proposed method.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Measurement and characterization of aging-induced gradient properties inside asphalt mixture by composite specimen method

Qinghong Fu, Yunxi Lou, Jianghui Deng, Xin Qiu, Xianhua Chen

Summary: Measurement and quantitative characterization of aging-induced gradient properties is crucial for accurate analysis and design of asphalt pavement. This research proposes the composite specimen method to obtain asphalt binders at different depths within the mixture and uses dynamic shear rheometer tests to measure aging-induced gradient properties and reveal internal mechanisms. G* master curves are constructed to investigate gradient aging effects in a wide range. The study finds that the composite specimen method can effectively restore the boundary conditions and that it is feasible to study gradient aging characteristics within the asphalt mixture. The study also observes variations in G* and delta values and the depth range of gradient aging effects for different aging levels.

MEASUREMENT (2024)

Article Engineering, Multidisciplinary

Enhanced precise orbit determination for GPS and BDS-2/3 with real LEO onboard and ground observations

Min Li, Kai Wei, Tianhe Xu, Yali Shi, Dixing Wang

Summary: Due to the limitations of ground monitoring stations in China for the BDS, the accuracy of BDS Medium Earth Orbit (MEO) satellite orbits can be influenced. To overcome this, low Earth orbit (LEO) satellites can be used as additional monitoring stations. In this study, data from two LEO satellites were collected to improve the precise orbit determination of the BDS. By comparing the results with GPS and BDS-2/3 solutions, it was found that including the LEO satellites significantly improved the accuracy of GPS and BDS-2/3 orbits.

MEASUREMENT (2024)