4.7 Article

Type IV failure in weldment of creep resistant ferritic alloys: I. Micromechanical origin of creep strain localization in the heat affected zone

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2019.103774

Keywords

Creep-strength-enhanced ferritic steel weldment; Microstructure-based finite element method; Grain boundary sliding; Strain localization

Funding

  1. U.S. Department of Energy, Cross-Cutting Materials RD Program
  2. Center for Materials Processing at The University of Tennessee, Knoxville
  3. National Science Foundation [DMR 1809640]

Ask authors/readers for more resources

Creep strength enhanced ferritic (CSEF) steels containing 9-12wt% chromium have been extensively used in fossil-fuel-fired power plants. Despite their excellent creep resistance at high temperatures, premature failures (especially Type IV cracking) are often found in the fine-grained heat affected zone (HAZ) or intercritical HAZ of the welded components. This failure mode is preceded by the strain localization in the HAZ, as measured by the Digital Image Correlation (DIC) technique. The present work aims to develop a finite-element based computational method to determine the micromechanical and microstructural origin of the strain localization phenomenon. We construct a two-dimensional digital microstructure based on the actual microstructure of ferritic steel weldments by using the Voronoi-tessellation method, to account for the effects of its large grain-size gradients. A mechanism-based finite element method is developed for modeling the high temperature deformation resulting from a synergy of thermally activated dislocation movements, diffusional flow and grain boundary sliding. The numerical results agree well with the strain measurements by our DIC technique, particularly revealing the effect of pre-welding tempering on the evolution of strain localization in HAZ of creep resistant steel weldments. It is found that the diffusional creep with dependence on grain sizes, dislocation creep with dependence on material strength, and more importantly, grain boundary sliding, contribute synergistically to the creep strain accumulation in the HAZ, and their relative degree of significance is quantified. The creep rupture life will be investigated in the companion paper. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

An inverse method to reconstruct crack-tip cohesive zone laws for fatigue by numerical field projection

H. Tran, Y. F. Gao, H. B. Chew

Summary: Introduced a novel field projection method to reconstruct the cohesive zone laws for steady-state fatigue crack growth. This method accurately extracts the crack-tip cohesive tractions and separations, addressing the challenge of unloading-reloading hysteresis in fatigue cycling.

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES (2022)

Article Nanoscience & Nanotechnology

Long-term tensile creep behavior of a family of FCC-structured multi-component equiatomic solid solution alloys

Di Xie, Rui Feng, Peter K. Liaw, Hongbin Bei, Yanfei Gao

Summary: This study investigates the long-term tensile creep behavior of multicomponent equiatomic solid solution alloys with face-centered cubic crystal structures. It is found that dislocation creep is the dominant deformation mechanism for all the alloys studied. Despite variations in room-temperature strength and creep rate, the creep lifetime data for these alloys are similar.

SCRIPTA MATERIALIA (2022)

Article Materials Science, Multidisciplinary

Determination of the friction stir welding window from the solid-state-bonding mechanics under severe thermomechanical conditions

Xue Wang, Yanfei Gao, Martin McDonnell, Zhili Feng

Summary: The article introduces the process of diffusion bonding and elimination of interfacial pores in solid-state bonding techniques. A new modeling framework of bonding fraction evolution is proposed, which is then applied to the Friction Stir Welding process, providing a figure of merit for industrial applications and FSW process design.

MATERIALIA (2022)

Article Engineering, Mechanical

Revealing the influential mechanism of strain ranges on cyclic-life saturation during creep-fatigue in Nickel-based superalloy DZ445

Biao Ding, Weili Ren, Yunbo Zhong, Xiaotan Yuan, Tianxiang Zheng, Zhe Shen, Yifeng Guo, Qiang Li, Jianchao Peng, Josip Brnic, Yanfei Gao, Peter K. Liaw

Summary: This study found that the generalized cyclic life saturation can be achieved through a dynamic equilibrium between straight single superdislocations and dislocation networks. The saturation phenomenon can be easily achieved by increasing local damage. The rate of change of straight single superdislocations is low in the range of large deformations.

INTERNATIONAL JOURNAL OF PLASTICITY (2022)

Article Materials Science, Multidisciplinary

Plastic anisotropy and twin distributions near the fatigue crack tip of textured Mg alloys from in situ synchrotron X-ray diffraction measurements and multiscale mechanics modeling

Di Xie, Wei Zhang, Zongyang Lyu, Peter K. Liaw, Huy Tran, Huck Beng Chew, Yujie Wei, Yang Ren, Yanfei Gao

Summary: Despite the superior mechanical properties of magnesium alloys, their potential applications are limited due to a lack of understanding of their failure mechanisms. This study utilizes synchrotron X-ray diffraction technique to analyze in situ strain mapping in a highly textured ZK60 Mg alloy. The results show good agreement with micromechanical modeling and reveal localized twin activities near the fatigue crack.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2022)

Article Nanoscience & Nanotechnology

Synergistic effects of microstructural inhomogeneity and phase-transformation-induced plasticity for ductility improvements in metallic glass composites

Huwen Ma, Yanchun Zhao, Xue Wang, Dong Ma, Yanfei Gao

Summary: Recent experiments have shown some success in improving the ductility of bulk metallic glass (BMG) composites containing metastable crystalline second-phase particles capable of TRIP-induced plasticity. The mechanisms behind these improvements are quantitatively investigated through micromechanical finite element simulations, revealing that for the metastable second phases to enhance the BMG composite ductility, the strength of the BMG matrix must be between that of soft austenite and hard martensite phases. This leads to effectively confining shear bands near the second phase, reducing maximum shear band strain, and thereby improving tensile ductility.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Materials Science, Multidisciplinary

Saturation effect of creep-fatigue cyclic-life for Nickel-based superalloy DZ445 under long-term tensile dwell periods at 900 °C

Shunran Zhang, Weili Ren, Biao Ding, Yunbo Zhong, Xiaotan Yuan, Tianxiang Zheng, Zhe Shen, Yifeng Guo, Qiang Li, Chunmei Liu, Jianchao Peng, Josip Brnic, Yanfei Gao, Peter K. Liaw

Summary: This study determines the creep-fatigue cyclic-life (Nf) saturation effect for the DZ445 superalloy at 900 degrees C with different dwell times. The saturation effect is observed in mechanical response, fracture modes, and is related to the dynamic equilibrium of superdislocations and dislocation networks.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2022)

Article Materials Science, Multidisciplinary

Extraordinary creep resistance in a non-equiatomic high-entropy alloy from the optimum solid-solution strengthening and stress-assisted precipitation process

Shuying Chen, Jingbo Qiao, Haoyan Diao, Tengfei Yang, Jonathan Poplawsky, Weidong Li, Fanchao Meng, Yang Tong, Liang Jiang, Peter K. Liaw, Yanfei Gao

Summary: Improving creep resistance is often achieved by optimizing alloy design to create strong solid-solution strengthening and/or coherent precipitates for dislocation blockage. High-entropy alloys (HEAs), which are single-phase solid-solutions, exhibit creep properties comparable to precipitate-strengthened ferritic alloys. However, many HEAs develop incoherent second phases during long-term annealing, reducing their lifetime and limiting their use at high temperatures. This study demonstrates the exceptional creep resistance of a non-equiatomic Al0.3CoCrFeNi HEA, which has a much lower creep strain rate compared to the Cantor alloy and its subsets. The research reveals that the suppression of B2 precipitate phase during the early stage of creep deformation and the emergence of metastable and coherent L1(2) precipitates significantly contribute to creep strengthening.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Mechanosensing model of fibroblast cells adhered on a substrate with varying stiffness and thickness

Wenjian Yang, Ma Luo, Yanfei Gao, Xiqiao Feng, Jinju Chen

Summary: This paper proposes a computational model to study the mechanosensing mechanisms of fibroblast cells on elastic hydrogel substrates. By considering the sensing mechanisms of cells to the rigidity, deformation, and traction forces of the substrate and neighboring cells, the model predicts the effects of substrate stiffness and thickness on stress fiber formation, disassociation, and integrin density. The results show that cells can sense neighboring cells by deforming the underlying substrate, and collective cells have enhanced mechanosensing capacity. This model not only enhances our understanding of cell mechanosensing, but also has implications for the design of biomaterials for tissue engineering and wound healing.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Materials Science, Multidisciplinary

Identifying the effect of coherent precipitates on the deformation mechanisms by in situ neutron diffraction in an extruded magnesium alloy under low-cycle fatigue conditions

D. Xie, Z. H. Li, T. T. Sasaki, Y. F. Gao, Z. Y. Lyu, R. Feng, Y. Chen, K. An, H. B. Chew, T. Nakata, S. Kamado, K. Hono, P. K. Liaw

Summary: The low-alloyed Mg-Al-Ca-Mn alloy, as a new class of heat-treatable magnesium alloys, shows great engineering potential due to its excellent extrudability and high strength achieved by the dispersion of Guinier-Preston (G.P.) zones. In this study, in situ neutron diffraction measurements were conducted to investigate the cyclic deformation behavior of this alloy with and without G.P. zone dispersion. The relationship between macroscopic deformation behavior and microscopic response at the grain level, such as twinning and detwinning, was established.

ACTA MATERIALIA (2023)

Article Thermodynamics

Investigation on the explosion dynamics of large-format lithium-ion pouch cells

Tongxin Shan, Xiaoqing Zhu, Zhenpo Wang, Hsin Wang, Yanfei Gao, Lei Li

Summary: This study investigates the explosion dynamics of large-format Li-ion cells through experimental and numerical research. Overcharge-to-explosion tests on 40 Ah Li-ion cells reveal the presence of Von Neumann peaks on pressure curves, indicating supersonic shockwave velocity, and the experiment confirms detonation instead of deflagration. Furthermore, a geometric model is established to study the explosion behavior numerically, revealing the propagation mechanism of the shockwave. This study fills the research gap on thermal runaway of Li-ion cells, especially in extreme cases like fire and explosion, and provides valuable guidance for battery safety.

APPLIED THERMAL ENGINEERING (2023)

Article Materials Science, Multidisciplinary

Achieving superb strength in single-phase FCC alloys via maximizing volume misfit

Zhongtao Li, Shihua Ma, Shijun Zhao, Weidong Zhang, Fei Peng, Qian Li, Tao Yang, Chia-Yi Wu, Daixiu Wei, Yi-Chia Chou, Peter K. Liaw, Yanfei Gao, Zhenggang Wu

Summary: By maximizing the volume misfits, a single-phase Ni-based FCC alloy with a superb yield strength (-1.05GPa) and good ductility (37%) is designed. This study provides two surprising and novel findings for single-phase FCC alloys: volume misfit is a good relevant indicator of kHP, and screw dislocations can contribute to strengthening once the solute-induced stress field reaches a critical value.

MATERIALS TODAY (2023)

Article Nanoscience & Nanotechnology

Micromechanical origin for the wide range of strength-ductility trade-off in metastable high entropy alloys

Zongyang Lyu, Zehao Li, Taisuke Sasaki, Yanfei Gao, Ke An, Yan Chen, Dunji Yu, Kazuhiro Hono, Peter K. Liaw

Summary: It is reported that interstitial metastable high entropy alloys (HEAs) can achieve a wide range of strength-ductility trade-offs through different annealing temperatures and times. The underlying mechanisms were investigated using in situ neutron diffraction, electron backscattered diffraction, and electron channel contrast imaging analyses. These techniques revealed that the phase transformation process can be tuned by various annealing processes, resulting in different degrees of load partitioning and sharing among different phases and grain families on the commensurate microstructural length scales. Therefore, the microstructures generated by thermal treatments and phase transformation from face-centered-cubic to hexagonal-close-packed phases can efficiently improve the ductility of the studied alloys.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

What are the dispersive shear bands on the surfaces of layered heterostructured materials?

Huwen Ma, Yanchun Zhao, Zhi Lyu, Xue Wang, Yuntian Zhu, Yanfei Gao

Summary: Using a sandwich structure as an example, this study demonstrates that the formation of dispersive shear bands on the surfaces of layered/gradient materials is caused by localized necking, rather than the previously believed hetero-deformation-induced (HDI) strengthening mechanism. Unlike the commonly observed necking mode, the layered structure exhibits necking at intermediate wavelengths during tensile deformation, resulting in larger ductility. These findings not only explain recent experimental observations, but also offer an alternative approach to understanding and improving the ductility in heterostructured materials.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Nanoscience & Nanotechnology

The effect of stacking fault energy on the formation of nano twin/HCP during deformation in FCC concentrated solid solution (CSS) alloys

Qingqing Ding, Yongkang Li, Jie Ouyang, Xiao Wei, Ze Zhang, Yanfei Gao, Hongbin Bei

Summary: This study systematically investigates the effect of stacking fault energy (SFE) on the mechanical properties and deformation mechanisms of NiCo-based alloys. The results show that SFE has little effect on yield strength but affects the ultimate tensile strength and elongation to fracture. At lower temperatures, a lower SFE is associated with a higher ultimate tensile strength.

MATERIALS TODAY NANO (2023)

Article Materials Science, Multidisciplinary

Non-Hermitian wave dynamics of odd plates: Microstructure design and theoretical modelling

Yanzheng Wang, Qian Wu, Yiran Tian, Guoliang Huang

Summary: This paper proposes the microstructure design of an odd plate and investigates the directional wave energy amplification and the presence of interface waves in odd plates through theoretical and numerical analysis. The research findings contribute to the understanding of elastic behavior in 2D non-Hermitian systems.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Topology optimization of flexoelectric metamaterials with apparent piezoelectricity

F. Greco, D. Codony, H. Mohammadi, S. Fernandez-Mendez, I. Arias

Summary: This study overcomes the difficulty of harnessing the flexoelectric effect by designing multiscale metamaterials. Through topology optimization calculations, we obtain optimal structures for various apparent piezoelectric properties and find that low-area-fraction lattices are the preferred choice. The results show competitive estimations of apparent piezoelectricity compared to reference materials such as quartz and PZT ceramics.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A treatment of particle-electrolyte sharp interface fracture in solid-state batteries with multi-field discontinuities

Xiaoxuan Zhang, Tryaksh Gupta, Zhenlin Wang, Amalie Trewartha, Abraham Anapolsky, Krishna Garikipati

Summary: This study presents a computational framework for coupled electro-chemo-(nonlinear) mechanics at the particle scale in solid-state batteries, including interfacial fracture, degradation in charge transfer, and stress-dependent kinetics. The discontinuous finite element method allows for arbitrary particle shapes and geometries.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Coexistence of five domains at single propagating interface in single-crystal Ni-Mn-Ga shape memory alloy

Chengguan Zhang, Xavier Balandraud, Yongjun He

Summary: The coexistence of both austenite and martensite is a common characteristic in Shape Memory Alloys (SMAs). The multiple-domain microstructures, consisting of austenite, martensite twins, and individual martensite variants, evolve collectively during the phase transformation, affecting the material's macroscopic response. This paper presents an experimentally observed interface consisting of five domains in a Ni-Mn-Ga single-crystal, and analyzes the effects of thermal loading path and material initial state on the domain pattern formation.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A snap-through instability of cell adhesion under perturbations in hydrostatic pressure

Shaobao Liu, Haiqian Yang, Guang-Kui Xu, Jingbo Wu, Ru Tao, Meng Wang, Rongyan He, Yulong Han, Guy M. Genin, Tian Jian Lu, Feng Xu

Summary: The balance between stress and adhesion plays a crucial role in governing the behaviors of adherent cells, such as cell migration. In certain microenvironments, such as tumor, variations in hydrostatic pressure can significantly impact cell volume and adhesion, which in turn affects cell behavior.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Pinning cracks by microstructure design in brittle materials

Xun Xiong, Qinglei Zeng, Yonghuan Wang, Ying Li

Summary: In this work, the authors investigate the possibility of enhancing the resistance to crack growth in brittle materials through microstructure design. They establish a computational framework to simulate crack propagation and characterize fracture energy. The effects of different types of voids on toughening mechanisms are explored, and the critical conditions for embrittlement-toughening transition are identified. The study also discusses the difference between void toughening in brittle and ductile materials, and extends the toughening strategy to nacre-like materials.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Dynamic high-order buckling and spontaneous recovery of active epithelial tissues

Huan Wang, Yong-Quan Liu, Jiu-Tao Hang, Guang-Kui Xu, Xi-Qiao Feng

Summary: This study establishes a cytoarchitectural model to accurately capture the buckling and postbuckling behaviors of epithelia under fast compression. The stress evolution of epithelia is divided into three stages: loading, phase transition, and stress recovery. The postbuckling process is governed by the active tension generated by the actomyosin network. The study also proposes a minimal model that predicts the flattening time and stress recovery extent as functions of applied strain or strain rate, in agreement with simulations and experiments.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Mechanics and topology of twisted hyperelastic filaments under prescribed elongations: Experiment, theory, and simulation

Lei Liu, Hao Liu, Yuming He, Dabiao Liu

Summary: This study investigates the mechanics and topologically complex morphologies of twisted rubber filaments using a combination of experiment and finite strain theory. A finite strain theory for hyperelastic filaments under combined tension, bending, and torsion has been established, and an experimental and theoretical morphological phase diagram has been constructed. The results accurately determine the configuration and critical points of phase transitions, and the theoretical predictions agree closely with the measurements.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Frictional slip wave solutions for dynamic sliding between a layer and a half-space

Abhishek Painuly, Kunnath Ranjith, Avinash Gupta

Summary: This paper analyzes the interfacial waves caused by frictional slipping and studies their dispersion relation and wave modes. By studying the slip waves in a geophysical model, the surface wave dispersion phenomenon is explored, and an alternative explanation is proposed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Asymptotically matched extrapolation of fishnet failure probability to continuum scale

Houlin Xu, Joshua Vievering, Hoang T. Nguyen, Yupeng Zhang, Jia-Liang Le, Zdenek P. Bazant

Summary: Motivated by the extraordinary strength of nacre, this study investigated the probabilistic distribution of fishnet strength using Monte Carlo simulations and found that previous analytical solutions are not applicable for fishnets with a large number of links. By approximating large-scale fishnets as a continuum with cracks or holes, the study revealed that the strength distribution follows the Weibull distribution. This new model has significance for optimizing the strength-weight ratio in printed material structures.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Nonlinear anisotropic viscoelasticity

Souhayl Sadik, Arash Yavari

Summary: This paper revisits the mathematical foundations of nonlinear viscoelasticity and studies the geometry of viscoelastic deformations. It discusses the decomposition of the deformation gradient into elastic and viscous distortions and concludes that the viscous distortion can only be a two-point tensor. The governing equations of nonlinear viscoelasticity are derived and the constitutive and kinetic equations for various types of viscoelastic solids are discussed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Elastic energy and polarization transport through spatial modulation

Wen Cheng, Hongkuan Zhang, Yu Wei, Kun Wang, Gengkai Hu

Summary: In this study, we propose a phenomenon similar to Thouless pumping for a continuous in-plane elastic system, enabling topological transport of elastic waves through spatial modulation of material elasticity. By incorporating specific lattice microstructures, termed pentamode materials, precise and robust control over elastic wave propagation is achieved.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A simple quantitative model of neuromodulation, Part I: Ion flow neural ion channels

Linda Werneck, Mertcan Han, Erdost Yildiz, Marc-Andre Keip, Metin Sitti, Michael Ortiz

Summary: We have developed a simple model that describes the ionic current through neuronal membranes by considering the membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck model of ion transport through individual ion channels with channel activation functions calibrated from experimental data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and shows remarkable agreement with experimentally measured current-voltage curves for human neural cells.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)