4.6 Article

Experimental and theoretical fracture analyses for three biomaterials with dental applications

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2019.103612

Keywords

Dental materials; Experimental fracture study; Mixed tension-shear fracture; GMTSN criterion

Ask authors/readers for more resources

Dental materials are known as efficient tools to revive the functionality and integrity of decayed/missing tooth structure. Being frequently subjected to different mixtures of tensile and shear loads accompanied by temperature changes and suffering from pre-existing voids and imperfect interfaces at the same time, dental restorations and prostheses are found to be susceptible to crack initiation and growth. In this paper, fracture properties of three dental biomaterials namely polymethylmethacrylate (PMMA), 75Sr and 75Sr10 undergoing mixed tensileshear loads are investigated. The PMMA used in this study has application as a cold-cured acrylic resin for repairing dental prostheses, while 75Sr and 75Sr10 are dental restorative materials. Fracture growth angle and onset of crack propagation are evaluated experimentally using shortened semi-circular bend specimens made from PMMA. In addition, the generalized maximum tangential strain (GMTSN) criterion is applied to theoretically predict the fracture behavior of the tested PMMA, as well as two other dental bio-composites reported in the literature viz 75Sr and 75Sr10. Good agreement is met between theory and practice when comparing fracture curves extracted from the GMTSN criterion and the experimental data points. Further, it is found that conventional stress- and strain-based fracture models fail to provide suitable estimates of crack growth behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

An analytical stress field for bi-material V-notches with end hole: New solution and effects of higher order terms

Seyed Karen Alavi, Majid R. Ayatollahi, Bahador Bahrami, Morteza Nejati

Summary: This study presents an analytical stress solution for bi-material V-notches with an end hole. The stress field is derived as an asymptotic series solution using the Kolosov-Muskhelishvili approach, with the constant coefficients computed using the least square method. The accuracy of the solution is verified through benchmarking with finite element method results.

MATHEMATICS AND MECHANICS OF SOLIDS (2023)

Article Materials Science, Multidisciplinary

Mixed-mode fracture prediction of acrylonitrile butadiene styrene material fabricated via fused deposition modeling

S. M. Javad Razavi, Amir Nabavi-Kivi, Majid R. Ayatollahi

Summary: Fused deposition modeling is an additive manufacturing technique used for rapid manufacturing and prototyping. However, the layer-wise fabrication process often leads to anisotropic behavior in the final products. This research aims to determine whether the isotropic assumption of material using maximum tangential stress and mean stress criteria can predict the mixed-mode fracture resistance of 3D-printed parts. The results show that both criteria can accurately predict the fracture loads of the fused deposition modeling parts.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS (2023)

Article Engineering, Mechanical

Heat treatment effects on fracture resistance of additively manufactured PLA specimens under mode I loading

Majid R. R. Ayatollahi, Parham Rezaeian, Amir Nabavi-Kivi, Mohammad Reza Khosravani

Summary: This study investigates the effect of heat treatment on the tensile, flexural, and fracture strength of PLA specimens made by the FDM technique. Annealing at different temperatures (80℃, 100℃, 120℃) was conducted on dog bone and ECT specimens to evaluate the mechanical and fracture performance of the FDM-PLA parts. Fracture behavior was assessed using EMC, J-integral, ASED, and MTS criteria, and compared with experimental results. Heat treatment significantly improved the structural integrity of FDM specimens, with a 57% increase in fracture resistance.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Geological

A Non-local XFEM-Based Methodology for Modeling Mixed-mode Fracturing of Anisotropic Rocks

Mohammad R. Mehraban, B. Bahrami, M. R. Ayatollahi, M. Nejati

Summary: One complexity in rock engineering is predicting fractures in rocks with anisotropy in both elastic and fracture properties. This study proposes a fracture criterion based on a stress averaging procedure using a combination of the extended finite element method (XFEM) and the cohesive zone model (CZM) to predict fracture growth in anisotropic rocks subjected to mixed mode I/II loadings. The precision of the proposed model is evaluated by comparing its predictions with experimental results on Grimsel granite, and the effects of important model parameters are discussed.

ROCK MECHANICS AND ROCK ENGINEERING (2023)

Article Chemistry, Physical

Impact Fatigue Life of Adhesively Bonded Composite-Steel Joints Enhanced with the Bi-Adhesive Technique

Alireza Akhavan-Safar, Ghasem Eisaabadi Bozchaloei, Shahin Jalali, Reza Beygi, Majid R. Ayatollahi, Lucas F. M. da Silva

Summary: Repeated impact is a common loading condition for bonded joints. However, the behavior of metal-composite bonded joints under repeated impact loads has not been widely studied. This study proposes the use of bi-adhesive technique to improve the durability of composite-metal joints under impact fatigue. Experimental and numerical analyses reveal that the double adhesives technique significantly enhances the impact fatigue life of the joints.

MATERIALS (2023)

Article Mechanics

Investigating the effect of raster orientation on fracture behavior of 3D-printed ABS specimens under tension-tear loading

A. Nabavi-Kivi, Majid R. Ayatollahi, Nima Razavi

Summary: This study investigates the fracture behavior of FDM specimens made of ABS under mixed-mode I/III loading conditions. Four different raster configurations and five loading angles were used, and the failure loads were predicted using the Equivalent Material Concept coupled with J-integral and Maximum Tangential Stress criteria. Both criteria were able to accurately predict the experimental failure loads, and SEM analysis confirmed the presence of three failure features.

EUROPEAN JOURNAL OF MECHANICS A-SOLIDS (2023)

Article Engineering, Mechanical

A new strategy for predicting fracture of U-notched specimens made of Al-6061-T6 and Al-5083 using extended finite element method

Pedram Bagheri, Ali Reza Torabi, Bahador Bahrami

Summary: This research focuses on the numerical investigation of fracture loads of U-notched specimens made of Al-6061-T6 and Al-5083 under pure opening mode and mixed mode I/II loading conditions. A new methodology is introduced to assess the notch fracture loads and crack growth path using the combination of the equivalent material concept (EMC) and extended finite element method (XFEM). The results are compared with a conventional elastic-plastic damage model, and the EMC-XFEM model is found to be more efficient and accurate in predicting fracture of ductile aluminum notches.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Mechanical

A novel test specimen for mixed mode I/II/III fracture study in brittle materials

Reza Jalayer, Behnam Saboori, Majid Reza Ayatollahi

Summary: A new test specimen is proposed for investigating mixed mode I/II/III fracture of materials. This test specimen creates mixed mode I/III loading conditions by displacing the position of an inclined crack from the middle of the rectangular specimen, in addition to mode II loading under anti-symmetric four-point bending. The experimental fracture loads of PMMA specimens are compared with theoretical predictions, showing satisfactory consistency.

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES (2023)

Article Engineering, Mechanical

Artificial neural network in prediction of mixed-mode I/II fracture load

Bahador Bahrami, Hossein Talebi, Majid R. Ayatollahi, Mohammad Reza Khosravani

Summary: This research demonstrates the application of artificial neural network (ANN) in predicting fracture under mixed-mode I/II loadings. By analyzing the importance of different input factors, crack parameters and material properties are selected as input data. Multiple ANN models are trained and optimized using different algorithms. The optimized models show low errors and high accuracy in predicting fracture, indicating the effectiveness and potential wide range application of data-driven fracture predictions compared to traditional physics-based criteria.

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES (2023)

Article Materials Science, Composites

Cyclic aging analysis of CFRP and GFRP composite laminates

Mostafa Moazzami, M. R. Ayatollahi, Alireza Akhavan-Safar, Sofia Teixeira de Freitas, Lucas F. M. da Silva

Summary: Moisture diffusion occurs in composite laminates when exposed to humidity, leading to a reduction in their mechanical properties, especially flexural stiffness, which is important in design. This research investigates the mechanical properties of CFRP and GFRP composites as a substrate in adhesive joints under cyclic wet/dry aging conditions for long-term structural applications. The results show that the reduction in flexural stiffness is more severe in CFRP laminates compared to GFRP laminates, indicating the suitability of GFRP laminates for ocean applications.

JOURNAL OF COMPOSITE MATERIALS (2023)

Article Engineering, Civil

On the asymmetric dynamic response of viscoelastic sector plate made of FG polymer foam

S. Karen Alavi, Majid R. Ayatollahi, Mohd Yazid Yahya, S. S. R. Koloor

Summary: This work presents an analytical investigation of the damped forced vibration behavior of viscoelastic annular sector plates made of porous polymer foam. The motion equations are derived using the first-order shear deformation theory (FSDT) in conjunction with the energy method and calculus of variations. Three types of pore distribution in the plate thickness are explored, and the obtained relations are extended to constitutive equations using the standard linear solid (SLS) viscoelastic model. The system of equations with variable coefficients is solved using perturbation technique and Fourier series, and the asymmetrically dynamic response is computed analytically in a closed-form solution. Transient dynamic behavior of viscoelastic functionally graded porous (VFGP) annular sector plates is then analyzed for various loadings, and a user-defined field code is developed for reliability evaluation.

THIN-WALLED STRUCTURES (2023)

Article Polymer Science

VO-Notches Subjected to Tension-Torsion Loading: Experimental and Theoretical Fracture Study on Polymeric Samples

Hossein Talebi, Mohsen Askari, Majid Reza Ayatollahi, Sergio Cicero

Summary: The research investigates the fracture behavior of brittle specimens weakened by V-shaped notches with end holes (VO-notches). Experimental investigation is conducted, and it is found that the size of the notch end-hole has an effect on the fracture resistance. Two stress-based criteria, the maximum tangential stress (MTS) criterion and the mean stress (MS) criterion, are developed for VO-shaped notches under mixed-mode I/III loading, and they accurately predict the fracture resistance of VO-notched samples with about 92% and 90% accuracy, respectively.

POLYMERS (2023)

Article Engineering, Chemical

Effects of low cycle impact fatigue on the residual mode II fracture energy of adhesively bonded joints

A. Akhavan-Safar, Sh. Jalali, L. F. M. da Silva, M. R. Ayatollahi

Summary: Cyclic loading significantly affects the durability of adhesively bonded joints, especially under cyclic impact loads. Low-energy cyclic impacts decrease the fracture energy of the joints, challenging the assumption of infinite life under cyclic impacts. The stress concentration caused by cyclic impact stress waves leads to a higher density of cracks at the specimen edges. Comprehensive inspections for bonded structures exposed to low-energy cyclic impacts are important to maintain joint strength and safe design and inspection practices.

INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES (2023)

Article Engineering, Biomedical

Study on the adverse effect of acid-corrosion on the dentin in terms of degradation of fracture resistance

Xinyao Zhu, Yifan Liu, Jing Ye, Wei Xu, Xuexia Zhao, Tianyan Liu

Summary: This study reveals the adverse effect of acid on dentin in terms of degradation of its fracture toughness. The peritubular dentin plays a significant role in enhancing the dentin's fracture resistance capability. The findings highlight the importance of structural integrity for dentin.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Rapidly derived equimolar Ca: P phasic bioactive glass infused flexible gelatin multi-functional scaffolds - A promising tissue engineering

Priya Ranganathan, Vijayakumari Sugumaran, Bargavi Purushothaman, Ajay Rakkesh Rajendran, Balakumar Subramanian

Summary: The study aims to design and fabricate an ultra-easier multi-functional biomedical polymeric scaffold loaded with unique equimolar Ca:P phasic bioactive glass material. The results showed that the G:BG (1:2) ratio is the more appropriate composition for enhanced bio-mineralization and higher surface area. The scaffold can induce mitogenesis in osteoblast cells for hard tissue regeneration and rapid collagen secretion in fibroblast cells for soft tissue regeneration.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Chemical-physical behavior of Hydroxyapatite: A modeling approach

Ziad Guerfi, Oum keltoum Kribaa, Hanane Djouama

Summary: Hydroxyapatite, a biocompatible and bioactive ceramic material, has been widely studied in fields such as orthopedics and plastic surgery. The use of computational tools, especially density functional theory, has become increasingly important in research. In this study, Hydroxyapatite was synthesized using the double decomposition method and quantum mechanical computations were performed using density functional theory. The experimental and computational results confirmed the successful synthesis of Hydroxyapatite and showed good agreement in spectroscopic characterizations.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Synthesis of bioactive heat cured PMMA/PEKK blend reinforced by nano titanium dioxide for bone scaffold applications

Sally AbdulHussain Kadhum, Nassier A. Nassir

Summary: In this research, porous composites were successfully prepared and reinforced for bone scaffold applications. The functional groups, pore structure, and composition distribution of the materials were characterized using techniques such as FTIR, Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM).

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Fracture toughness, work of fracture, flexural strength and elastic modulus of 3D-printed denture base resins in two measurement environments after artificial aging

Veronika Geiger, Felicitas Mayinger, Moritz Hoffmann, Marcel Reymus, Bogna Stawarczyk

Summary: The study investigated the mechanical properties of four additively manufactured denture base resins in different measurement environments, and found that the measurement environment impacts the strength and fracture toughness of the materials.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor

Junxiao Wang, Amatjan Sawut, Rena Simayi, Huijun Song, Xueying Jiao

Summary: The development of cost-effective and eco-friendly conductive hydrogels with excellent mechanical properties, self-healing capabilities, and non-toxicity is of great significance in the field of biosensors.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Hydroxyapatite particle shape affects screw attachment in cancellous bone when augmented with hydroxyapatite-containing hydrogels

Yijun Zhou, Lisa Ho, Ayan Samanta, Philip Procter, Cecilia Persson

Summary: In this study, soft, non-setting biomaterials based on Hyalectin gels and different morphological parameters of hydroxyapatite (HA) particles were evaluated as potential augmentation materials for orthopaedic implant fixation. The results showed that constructs reinforced with irregularly shaped nano-HA particles and spherically shaped micro-HA particles had significantly higher pull-out force compared to the control group.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

A comprehensive simulation framework for predicting the eCLIPs implant crimping into a catheter and its deployment mechanisms

Mehdi Jahandardoost, Donald Ricci, Abbas S. Milani, Mohsen Jahandardoost, Dana Grecov

Summary: Tubular flow diverters are important for treating cerebral aneurysms. A new design called VR-eCLIPs has been developed to cover the neck of challenging bifurcation aneurysms. A finite element model has been used to simulate the implantation processes of VR-eCLIPs and assess potential plastic deformation.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Assessment of needle-tissue force models based on ex vivo measurements

Marek Traczynski, Adam Patalas, Katarzyna Roslan, Marcin Suszynski, Rafa l Talar

Summary: This article evaluates the forces acting on intravenous needles during insertion into the skin and selects the most suitable model for future research. The experimental results show that needle size, insertion angle, and insertion speed have an influence on the measured force values.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

An analytical model to measure dental implant stability with the Advanced System for Implant Stability Testing (ASIST)

Chester Jar, Andrew Archibald, Monica Gibson, Lindsey Westover

Summary: This study evaluates the ASIST technique for assessing the stability of dental implants. The results show that the ASIST technique can reliably measure the interfacial stiffness of dental implants, which is not significantly influenced by different abutment types. This method may provide an improved non-invasive way to measure the stability of dental implants.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Physics-informed UNets for discovering hidden elasticity in heterogeneous materials

Ali Kamali, Kaveh Laksari

Summary: In this paper, a UNet-based neural network model (El-UNet) is developed to infer the spatial distributions of mechanical parameters. The El-UNet shows superior performance in terms of accuracy and computational cost compared to other neural network models. A self-adaptive spatial loss weighting approach is proposed, which achieves the most accurate reconstructions in equal computation times.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

A hemostatic sponge derived from chitosan and hydroxypropylmethylcellulose

Chunyan Yu, Yanju Lu, Jinhui Pang, Lu Li

Summary: In this study, a safe and effective hemostatic composite sponge was developed by combining chitosan and hydroxypropylmethylcellulose (HPMC). The sponge exhibited excellent flexibility and rapid hemostatic ability in vitro. In vivo assessments showed that the sponge had the shortest clotting time and minimal blood loss.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Enhancing stiffness and damping characteristics in nacreous composites through functionally graded tablet design

Zhongliang Yu, Lin Yu, Junjie Liu

Summary: The study proposes incorporating functionally graded tablets into nacreous composites to enhance both stiffness and damping properties. Analytical formulae and numerical experiments demonstrate the effectiveness of this design, surpassing existing homogeneous composites in performance.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Multiscale homogenisation of diffusion in enzymatically-calcified hydrogels

Marc Graham, Sandra Klinge

Summary: This study investigates the macroscopic diffusion behavior of heterogeneous gels using a homogenization method in a finite element framework. Two materials, calcifying PDMA and PAAm, were studied, and the results show that the diffusivity of PDMA has a strong nonlinear dependence on the solute molecule radius.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)

Article Engineering, Biomedical

Optimization of surface roughness, phase transformation and shear bond strength in sandblasting process of YTZP using statistical machine learning

Abdur-Rasheed Alao

Summary: This study aimed to find the optimal sandblasting parameters for roughening YTZP surfaces. Through experimental and statistical analysis, the best setting was found to be IA = 45 degrees, AP = 110 μm, ST = 20 s, and P = 400 kPa, which resulted in the maximum surface roughness, phase transformation, and shear bond strength.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2024)