4.8 Article

A DNA Origami Platform for Single-Pair Forster Resonance Energy Transfer Investigation of DNA-DNA Interactions and Ligation

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 2, Pages 815-825

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b09093

Keywords

-

Funding

  1. IMPRS-LS graduate school
  2. Deutsche Forschungsgemeinschaft (DFG) [SFB1032, GRK1721]
  3. Ludwig-Maximilians-Universitat Munchen via the Center for NanoScience Munich (CeNS)
  4. LMUinnovativ initiative Biolmaging Network (BIN)

Ask authors/readers for more resources

DNA double-strand breaks (DSBs) pose an everyday threat to the conservation of genetic information and therefore life itself. Several pathways have evolved to repair these cytotoxic lesions by rejoining broken ends, among them the nonhomologous end-joining mechanism that utilizes a DNA ligase. Here, we use a custom-designed DNA origami nanostructure as a model system to specifically mimic a DNA DSB, enabling us to study the end-joining of two fluorescently labeled DNA with the T4 DNA ligase on the single-molecule level. The ligation reaction is monitored by Forster resonance energy transfer (FRET) experiments both in solution and on surface-anchored origamis. Due to the modularity of DNA nanotechnology, DNA double strands with different complementary overhang lengths can be studied using the same DNA origami design. We show that the T4 DNA ligase repairs sticky ends more efficiently than blunt ends and that the ligation efficiency is influenced by both DNA sequence and the incubation conditions. Before ligation, dynamic fluctuations of the FRET signal are observed due to transient binding of the sticky overhangs. After ligation, the FRET signal becomes static. Thus, we can directly monitor the ligation reaction through the transition from dynamic to static FRET signals. Finally, we revert the ligation process using a restriction enzyme digestion and religate the resulting blunt ends. The here-presented DNA origami platform is thus suited to study complex multistep reactions occurring over several cycles of enzymatic treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available