4.7 Article

Using Citizen Science Reports to Evaluate Estimates of Surface Precipitation Type

Journal

BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
Volume 97, Issue 2, Pages 187-193

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/BAMS-D-13-00247.1

Keywords

-

Funding

  1. HyDROS Lab at the University of Oklahoma
  2. NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma [NA17RJ1227]

Ask authors/readers for more resources

In meteorological investigations, the reference variable or ground truth typically comes from an instrument. This study uses human observations of surface precipitation types to evaluate the same variables that are estimated from an automated algorithm. The NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS) system relies primarily on observations from the Next Generation Radar (NEXRAD) network and model analyses from the Earth System Research Laboratory's Rapid Refresh (RAP) system. Each hour, MRMS yields quantitative precipitation estimates and surface precipitation types as rain or snow. To date, the surface precipitation type product has received little attention beyond case studies. This study uses precipitation type reports collected by citizen scientists who have contributed observations to the meteorological Phenomena Identification Near the Ground (mPING) project. Citizen scientist reports of rain and snow during the winter season from 19 December 2012 to 30 April 2013 across the United States are compared to the MRMS precipitation type products. Results show that while the mPING reports have a limited spatial distribution (they are concentrated in urban areas), they yield similar critical success indexes of MRMS precipitation types in different cities. The remaining disagreement is attributed to an MRMS algorithmic deficiency of yielding too much rain, as opposed to biases in the mPING reports. The study also shows reduced detectability of snow compared to rain, which is attributed to lack of sensitivity at S band and the shallow nature of winter storms. Some suggestions are provided for improving the MRMS precipitation type algorithm based on these findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available