4.5 Article

Experimental characterization of the quasi-static and dynamic piezoresistive behavior of multi-walled carbon nanotubes/elastomer composites

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 39, Issue 7-8, Pages 299-310

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684420901754

Keywords

Piezoresistivity; carbon nanotubes; elastomer; split Hopkinson pressure bar loading; quasi-static compression

Funding

  1. Region Centre Val De Loire

Ask authors/readers for more resources

Multi-walled carbon nanotube (MWCNT)/elastomer composites exhibit a piezoresistive behavior, i.e. their resistivity changes when they are subjected to mechanical loading. Thus, these materials can be used as strain or pressure sensors. In this paper, the effect of carbon nanotube weight fraction on the sensitivity and repeatability of the electrical response of multi-walled carbon nanotube/ethylene-propylene-diene monomer composites is investigated, under quasi-static and dynamic compression (using split Hopkinson pressure bars). It was found that multi-walled carbon nanotube weight fraction and the strain rate have a major influence on the piezoresistivity of such composites. Although all samples exhibited a good repeatability of their electrical response under quasi-static cyclic compression, those with a lower multi-walled carbon nanotube weight fraction had a higher sensitivity to strain. An increase in the electrical resistance during compression was observed under both quasi-static and dynamic compression. Reversible movements of multi-walled carbon nanotube in the transverse direction of compression increased the average inter-multi-walled carbon nanotube distance under quasi-static compression, leading to higher values of resistance. After the dynamic tests, the Young's modulus of the composites decreased by about 45% and the electrical resistance increased a hundredfold, indicating damage induced by dynamic loading.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available