4.5 Article

Magnetic anisotropy and Curie temperature of two-dimensional VI3 monolayer

Journal

JOURNAL OF PHYSICS-CONDENSED MATTER
Volume 32, Issue 24, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-648X/ab7c14

Keywords

VI3; magnetic anisotropy; Curie temperature

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2019RA21B5B01069807]
  2. National Research Foundation of Korea [22A20131112367] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Recently, it was reported that the VI3 had a Mott insulator nature and also displayed the structural and magnetic phase transition at low temperature. Here, we explored the magnetic properties of the two-dimensional (2D) monolayer structure using the density functional theory. We found that the 2D VI3 had an enhanced lattice constant compared with that in the bulk structure. Besides, the 2D monolayer had an indirect band gap of 0.98 eV, and this band gap was increased (decreased) with tensile (compressive) strain up to +/- 3%. The monolayer structure had a ferromagnetic ground state and this nature was preserved under both tensile and compressive strains. We obtained that the monolayer structure had a perpendicular magnetic anisotropy energy of 0.29 meV/cell. The perpendicular magnetic anisotropy still remained even after applying the tensile and compressive strains although the magnitude of magnetic anisotropy was slightly changed. Using the Metropolis Monte Carlo simulations, we found that the monolayer had a Curie temperature of 46 K. This Curie temperature was increased to 57 K with 3% tensile strain whereas it was decreased to 35 K with 3% compressive strain. Overall, we found that the magnetic property of 2D VI3 monolayer was robust under the strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available