4.7 Article

QCM2R: A QoS-aware cross-layered multichannel multisink routing protocol for stream based wireless sensor networks

Journal

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jnca.2020.102552

Keywords

Wireless sensor networks; Wireless multimedia sensor networks; Routing; Multichannel; Multisink; Multipath; Multiradio; Cognitive radio wireless sensor networks; Micro-electro-mechanical systems

Funding

  1. Deutscher Akademischer Austausch Dienst (DAAD), Germany [91541022]

Ask authors/readers for more resources

Unlike the scalar data (such as temperature, pressure and humidity), the vector data (such as image, audio and video) necessitates more stringent Quality of Service (QoS) requirements in terms of bandwidth, delay, reliability and information security. These QoS requirements can be hardly achieved in a proper fashion by using a single channel for wireless communication. However, multichannel methodology may assist in accomplishing these QoS requirements by making possible parallel communication, enhancing throughput/delivery ratio, reducing transmission delay and countering jamming attacks. Furthermore, enabling data gathering at multiple points (i.e. multisink approach) may improve QoS by handling congestion, avoiding single point of failure issue and making possible load balancing between the available routes towards the corresponding destinations. To achieve reliable communication in stream based multichannel Wireless Sensor Networks (WSNs), this work proposes a novel QoS-aware Cross-layered Multichannel Multisink Routing protocol (QCM2R) for WSNs. For substantiating the performance of QCM2R protocol, the simulations are performed in NS-2 demonstrating the performance superiority of the proposed QCM2R protocol against the counterpart in terms of network lifetime, reliability, delay and throughput.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Computer Science, Information Systems

ZGLS: a novel flat quorum-based and reliable location management protocol for VANETs

Maaz Rehan, Halabi Hasbullah, Ibrahima Faye, Waqas Rehan, Omer Chughtai, Mubashir Husain Rehmani

WIRELESS NETWORKS (2018)

Article Computer Science, Theory & Methods

FRP: A novel fast rerouting protocol with multi-link-failure recovery for mission-critical WSN

Shehroz Riaz, Maaz Rehan, Tariq Umer, Muhammad Khalil Afzal, Waqas Rehan, Ehsan Ullah Munir, Tassawar Iqbal

FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE (2018)

Review Computer Science, Hardware & Architecture

Anatomizing the robustness of multichannel MAC protocols for WSNs: An evaluation under MAC oriented design issues impacting QoS

Waqas Rehan, Stefan Fischer, Maaz Rehan

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2018)

Correction Computer Science, Information Systems

ZGLS: a novel flat quorum-based and reliable location management protocol for VANETs (vol 24, pg 1885, 2018)

Maaz Rehan, Halabi Hasbullah, Ibrahima Faye, Waqas Rehan, Omer Chughtai, Mubashir Husain Rehmani

WIRELESS NETWORKS (2019)

Article Computer Science, Hardware & Architecture

Clustering-cum-Handover Management Scheme for improved Internet access in high-density mobile wireless environments

Anam Javaid, Asma Rafiq, Maaz Rehan, M. Mustafa Rafique, M. Kamran, Ehsan Ullah Munir

Summary: This paper proposes a novel mechanism for uninterrupted connectivity in high density mobile wireless environments, ensuring seamless handover and providing high network throughput and low end-to-end delay through clustering and handover management.

SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS (2021)

Article Computer Science, Artificial Intelligence

Differential Privacy in Cognitive Radio Networks: A Comprehensive Survey

Muneeb Ul Hassan, Mubashir Husain Rehmani, Maaz Rehan, Jinjun Chen

Summary: Integrating cognitive radio with traditional wireless networks helps solve spectrum scarcity, but can lead to privacy leakage. Differential privacy is the most important privacy preservation strategy and can effectively protect the privacy of CRNs in modern scenarios.

COGNITIVE COMPUTATION (2022)

Article Computer Science, Information Systems

AD-RDC: A Novel Adaptive Dynamic Radio Duty Cycle Mechanism for Low-Power IoT Devices

Zameer Ahmed, Muhammad Maaz Rehan, Omer Chughtai, Muhammad Waqas Rehan

Summary: This article proposes an adaptive dynamic RDC (AD-RDC) mechanism based on the extended phase lock for low-power IoT devices, which dynamically adjusts the RDC values of nodes based on traffic load and residual energy to improve energy efficiency and network synchronization. Simulation results show that AD-RDC improves packet delivery ratio, network lifetime, end-to-end delay, and broadcast reachability in dynamic environments.

IEEE INTERNET OF THINGS JOURNAL (2022)

Article Computer Science, Information Systems

A novel dynamic confidence interval based secure channel prediction approach for stream-based multichannel wireless sensor networks

Waqas Rehan, Stefan Fischer, Omer Chughtai, Maaz Rehan, Mohamed Hail, Shahzad Saleem

AD HOC NETWORKS (2020)

Article Computer Science, Hardware & Architecture

A dynamic state sharding blockchain architecture for scalable and secure crowdsourcing systems

Zihang Zhen, Xiaoding Wang, Hui Lin, Sahil Garg, Prabhat Kumar, M. Shamim Hossain

Summary: In this paper, a blockchain architecture based on dynamic state sharding (DSSBD) is proposed to solve the problems caused by cross-shard transactions and reconfiguration. By utilizing deep reinforcement learning, the number of shards, block spacing, and block size can be dynamically adjusted to improve the performance of the blockchain. The experimental results show that the crowdsourcing system with DSSBD has better performance in terms of throughput, latency, balancing, cross-shard transaction proportion, and node reconfiguration proportion, while ensuring security.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

A flexible algorithm to offload DAG applications for edge computing

Gabriel F. C. de Queiroz, Jose F. de Rezende, Valmir C. Barbosa

Summary: Multi-access Edge Computing (MEC) is a technology that enables faster task processing at the network edge by deploying servers closer to end users. This paper proposes the FlexDO algorithm to solve the DAG application partitioning and offloading problem, and compares it with other solutions to demonstrate its superior performance in various test scenarios.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

DTL-IDS: An optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic Algorithm

Shahid Latif, Wadii Boulila, Anis Koubaa, Zhuo Zou, Jawad Ahmad

Summary: In the field of Industrial Internet of Things (IIoT), networks are increasingly vulnerable to cyberattacks. This research introduces an optimized Intrusion Detection System based on Deep Transfer Learning (DTL) for heterogeneous IIoT networks, combining Convolutional Neural Networks (CNNs), Genetic Algorithms (GA), and ensemble techniques. Through rigorous evaluation, the framework achieves exceptional performance and accurate detection of various cyberattacks.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

STOP: Joint send buffer and transmission control for user-perceived deadline guarantee via curriculum guided-deep reinforcement learning

Rongji Liao, Yuan Zhang, Jinyao Yan, Yang Cai, Narisu Tao

Summary: This paper proposes a joint control approach called STOP to guarantee user-perceived deadline using curriculum-guided deep reinforcement learning. Experimental results show that the STOP scheme achieves a significantly higher average arrival ratio in NS-3.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

End-to-end active queue management with Named-Data Networking

Miguel Rodriguez-Perez, Sergio Herreria-Alonso, J. Carlos Lopez-Ardao, Raul F. Rodriguez-Rubio

Summary: This paper presents an implementation of an active queue management (AQM) algorithm for the Named-Data Networking (NDN) architecture and its application in congestion control protocols. By utilizing the congestion mark field in NDN packets, information about each transmission queue is encoded to achieve a scalable AQM solution.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

HADES: An NFV solution for energy-efficient placement and resource allocation in infrastructures

Angel Canete, Mercedes Amor, Lidia Fuentes

Summary: This paper proposes an energy-aware placement of service function chains of Virtual Network Functions (VNFs) and a resource-allocation solution for heterogeneous edge infrastructures. The solution has been integrated with an open source management and orchestration project and has been successfully applied to augmented reality services, achieving significant reduction in power consumption and ensuring quality of service compliance.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

Node cardinality estimation in a heterogeneous wireless network deployed over a large region using a mobile base station

Sachin Kadam, Kaustubh S. Bhargao, Gaurav S. Kasbekar

Summary: This paper discusses the problem of estimating the node cardinality of each node type in a heterogeneous wireless network. Two schemes, HSRC-M1 and HSRC-M2, are proposed to rapidly estimate the number of nodes of each type. The accuracy and efficiency of these schemes are proven through mathematical analysis and simulation experiments.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

A hybrid analytical concept to QoE index evaluation: Enhancing eMBB service detection in 5G SA networks

Jean Nestor M. Dahj, Kingsley A. Ogudo, Leandro Boonzaaier

Summary: The launch of commercial 5G networks has opened up opportunities for heavy data users and highspeed applications, but traditional monitoring and evaluation techniques have limitations in the 5G networks. This paper presents a cost-effective hybrid analytical approach for detecting and evaluating user experience in real-time 5G networks, using statistical methods to calculate the user quality index.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

Dynamic resource management in integrated NOMA terrestrial-satellite networks using multi-agent reinforcement learning

Ali Nauman, Haya Mesfer Alshahrani, Nadhem Nemri, Kamal M. Othman, Nojood O. Aljehane, Mashael Maashi, Ashit Kumar Dutta, Mohammed Assiri, Wali Ullah Khan

Summary: The integration of terrestrial and satellite wireless communication networks offers a practical solution to enhance network coverage, connectivity, and cost-effectiveness. This study introduces a resource allocation framework that leverages local cache pool deployments and non-orthogonal multiple access (NOMA) to improve energy efficiency. Through the use of a multi-agent enabled deep deterministic policy gradient algorithm (MADDPG), the proposed approach optimizes user association, cache design, and transmission power control, resulting in enhanced energy efficiency and reduced time delays compared to existing methods.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

A fast coordination approach for large-scale drone swarm

Wu Chen, Jiayi Zhu, Jiajia Liu, Hongzhi Guo

Summary: With advancements in technology, large-scale drone swarms will be widely used in commercial and military fields. Current application methods are mainly divided into autonomous methods and controlled methods. This paper proposes a new framework for global coordination through local interaction.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

CE-VNE: Constraint escalation virtual network embedding algorithm assisted by graph convolutional networks

Peiying Zhang, Zhihu Luo, Neeraj Kumar, Mohsen Guizani, Hongxia Zhang, Jian Wang

Summary: With the development of Industry 5.0, the demand for network access devices is increasing, especially in areas such as financial transactions, drone control, and telemedicine where low latency is crucial. However, traditional network architectures limit the construction of low-latency networks due to the tight coupling of control and data forwarding functions. To overcome this problem, researchers propose a constraint escalation virtual network embedding algorithm assisted by Graph Convolutional Networks (GCN), which automatically extracts network features and accelerates the learning process to improve network performance.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Review Computer Science, Hardware & Architecture

Comprehensive review on congestion detection, alleviation, and control for IoT networks

P. Anitha, H. S. Vimala, J. Shreyas

Summary: Congestion control is crucial for maintaining network stability, reliability, and performance in IoT. It ensures that critical applications can operate seamlessly and that IoT devices can communicate efficiently without overwhelming the network. Congestion control algorithms ensure that the network operates within its capacity, preventing network overload and maintaining network performance.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

Enabling containerized Central Unit live migration in 5G radio access network: An experimental study

Shunmugapriya Ramanathan, Abhishek Bhattacharyya, Koteswararao Kondepu, Andrea Fumagalli

Summary: This article presents an experiment that achieves live migration of a containerized 5G Central Unit module using modified open-source migration software. By comparing different migration techniques, it is found that the hybrid migration technique can reduce end-user service recovery time by 36% compared to the traditional cold migration technique.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

Survey on the authentication and key agreement of 6LoWPAN: Open issues and future direction

Fatma Foad Ashrif, Elankovan A. Sundararajan, Rami Ahmad, Mohammad Kamrul Hasan, Elaheh Yadegaridehkordi

Summary: This article introduces the development and current status of authentication protocols in 6LoWPAN, and proposes an innovative perspective to fill the research gap. The article comprehensively surveys and evaluates AKA protocols, analyzing their suitability in wireless sensor networks and the Internet of Things, and proposes future research directions and issues.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)

Article Computer Science, Hardware & Architecture

Task offloading to edge cloud balancing utility and cost for energy harvesting Internet of Things

Pranjal Kumar Nandi, Md. Rejaul Islam Reaj, Sujan Sarker, Md. Abdur Razzaque, Md. Mamun-or-Rashid, Palash Roy

Summary: This paper proposes a task offloading policy for IoT devices to a mobile edge computing system, aiming to balance device utility and execution cost. A meta heuristic approach is developed to solve the offloading problem, and the results show its potential in terms of task execution latency, energy consumption, utility per unit cost, and task drop rate.

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS (2024)