4.6 Article

Ca2+-Calcineurin Axis-Controlled NFAT Nuclear Translocation Is Crucial for Optimal T Cell Immunity in an Early Vertebrate

Journal

JOURNAL OF IMMUNOLOGY
Volume 204, Issue 3, Pages 569-585

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1901065

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [31972822, 31872591]
  2. Shanghai Pujiang Program [18PJ1402700]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Calcium ion (Ca2+) is a widespread and primitive second messenger that regulates physiological cell functions in almost all life beings. Ca2+ influx-induced NFAT activation is essential for T cell function and adaptive immunity. However, whether and how Ca-2(+) signaling modulates T cell immunity in early vertebrates, especially in nontetrapods, remains largely unknown. To address these questions, a Nile tilapia (Oreochromis niloticus) model was employed to investigate the regulation of ancestral T cell immunity by Ca2+-NFAT signaling in jawed fish. In Nile tilapia, an evolutionarily conserved Ca2+-NFAT signaling pathway is involved in the primary adaptive immune response during Streptococcus agalactiae infection. Meanwhile, T cell signals trigger several events along the Ca2+-NFAT axis in this early vertebrate, including Ca2+ influx, calcineurin activation, and NFAT nuclear import. More critically, suppression of Ca2+-NFAT signaling by the calcineurin inhibitor cyclosporine A impairs primordial T cell activation, clonal expansion, and infection clearance. Mechanistically, Nile tilapia NFAT interacts with several other transcription factors for potent gene expression, and T cells in this nontetrapod employ Cabinl and DYRKIA to regulate NFAT nuclear import and export, respectively. To the best of our knowledge, this study is the first to demonstrate the regulatory mechanism of Ca2+-NFAT signaling on T cell immunity in a nontetrapod species. We suggest that modulation of T cell immunity by Ca2+-NFAT signaling is a primitive strategy that already existed prior to the divergence of bony fish from the tetrapod lineage. The findings of this study provide valuable perspectives for understanding the evolution of adaptive immune system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available