4.7 Article

Enhanced photocatalytic reduction for the dechlorination of 2-chlorodibenzo-p-dioxin by high-performance g-C3N4/NiO heterojunction composites under ultraviolet-visible light illumination

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 384, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121255

Keywords

2-CDD; g-C3N4/NiO; Reductive dechlorination; Detoxification

Funding

  1. Key Research & Development project of Science Technology Department of Zhejiang Province [2017C02026]
  2. Program for 151 Talents in Zhejiang Province [4108Z061700303]
  3. Program for 131 Talents in Hangzhou City [4105F5061700104]

Ask authors/readers for more resources

Polychlorinated dibenzo-p-dioxins (PCDDs), characterized by their high persistency and bioaccumulation, are widely detected in the environment. In this study, high-performance g-C3N4/NiO heterojunctions were fabricated to degrade 2-chlorodibenzo-p-dioxin (2-CDD) under ultraviolet-visible (UV-vis) light illumination. Experiments revealed that the pure g-C3N4 and range of g-C3N4/NiO heterojunctions were synthesized by the mixing and heating method, and then were characterized by XRD, TEM, XPS and PL etc. The composites exhibited enhanced dechlorination activities under anoxic conditions. After comparison, the g-C3N4/NiO (4:6) showed optimal dechlorination performance such that 70.4% of 2-CDD was removed within 8 h and 52.3% of 2-CDD was transformed to dibenzo-p-dioxin (DD), about fourfold higher than the pristine g-C3N4. The transformation of 2-CDD was accompanied by the resale of Cl ion, and the additional oxygen was proven to be able to consume electrons and hydrogen ions, thus greatly inhibiting the degradation of PCDD in systems. The g-C3N4/NiO (4:6) can be reused at least seven times, and the mechanism was proposed in detail to promote photoinduced electrohole separation and provide active sites. This study extends the use range of g-C3N4/NiO heterojunctions and develops a new technology to degrade PCDDs with striking activity and stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available