4.7 Article

Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 384, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121270

Keywords

Carboxylic acid; Nanocatalyst; Nitrophenol; Nitroaniline; Reduction

Funding

  1. Ministry of Science and Technology of Taiwan [MOST 108-2113-M-008-009]

Ask authors/readers for more resources

Highly active Ag-doped Ni nanoparticles are successfully fabricated within carboxylic acid (-COOH) functionalized mesoporous silica SBA-16 by a facile wet incipient technique for catalytic conversion of toxic nitroaromatics. The -COOH groups on SBA-16 play a crucial role by enhancing the electrostatic interactions with Ag(I)/Ni(II) cations, that control the crystal growth during the thermal reduction. Systematic characterizations of SBA-16C and Agx%Ni@SBA-16C are performed by different techniques including solid state C-13 and Si-29 nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N-2 sorption, X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and superconducting quantum interference device (SQUID). The highly dispersed ultrafine Ag-doped Ni NPs (similar to 3 nm) are well-confined within SBA-16C and exhibit magnetic properties that are extremely beneficial for recycling. The bimetallic Ag2.4%Ni@SBA-16C shows exceptionally high catalytic activity during catalytic conversion of toxic nitroaromatics to environmentally friendly amino-aromatics. The enhanced catalytic activity could be ascribed to the combined effects of unique electronic properties, synergistic effects of Ag-doped Ni, ultra-small size, metal loading, and favorable textural properties. These magnetically separable nanocatalysts show excellent durability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available