4.7 Article

Porous SiO2 coated AlxFeyZr1-x-yO2 solid superacid nanoparticles with negative charge for polyvinylidene fluoride (PVDF) membrane: Cleaning and partial desalinating seawater

Journal

JOURNAL OF HAZARDOUS MATERIALS
Volume 384, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121471

Keywords

CS-SAFZr nanoparticles; ZrO2 solid superacid; PVDF membrane; Cleaning; Partial desalination

Funding

  1. National Natural Science Foundation of China [21676180, 21076143]
  2. key technologies R&D program of Tianjin [15ZCZDSF00160]
  3. Tianjin Municipal Science and Technology Xinghai Program [KJXH2014-05]

Ask authors/readers for more resources

In this work, porous SiO2 coated AlxFeyZr1-x-yO2 solid superacid nanoparticles with negative charge (CS-SAFZr) were synthesized via hydrolysis, sulfation and sulfonation, and characterized by SEM, TEM, XRD, BET and so on. The results show that the size of CS-SAFZr nanoparticles prepared under the optimum preparation conditions is around 80 nm, thickness of the porous SiO2 shell is about 20 nm, Hammett acidity is -16.197 and ion exchange capacity (IEC) is 0.98 mmol.g(-1). Correspondingly, ferrum (Fe) and aluminum (Al) elements are successfully doped into the ZrO2 lattice and the doped nanoparticles present a specific surface area of 396.2 m(2) g(-1) with abundant hydroxyl and sulfonic acid groups on the surface. To investigate the properties of the nanoparticles as the filler, polyvinylidene fluoride (PVDF) was used as a candidate to prepare CS-SAFZr/PVDF ultrafiltration (UF) composite membranes and the performance were characterized via cleaning and desalinating seawater. Results indicate that the CS-SAFZr nanoparticles strengthen their compatibility with the membrane via hydrogen bonds and improve performances of PVDF membrane. The suspended solid and conductivity decline ratio of permeate seawater was 1.8 mg L-1 and 13.20% respectively, indicating that CS-SAFZr/PVDF membrane performs seawater cleaning and partial desalination. Therefore, CS-SAFZr nanoparticles can be a promising candidate to modify PVDF membrane for cleaning and desalinating seawater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Nanoscience & Nanotechnology

Cubic CuFe2O4 Spinel with Octahedral Fe Active Sites for Electrochemical Dechlorination of 1,2-Dichloroethane

Guoqiang Gan, Fengquan Xu, Xinyong Li, Shiying Fan, Chunpeng Bai, Qidong Zhao, Moses O. Tade, Shaomin Liu, Wenjun Zhang

Summary: The influence of crystal phase on the electrocatalytic performance and active sites of CuFe2O4 spinel for the electrochemical dechlorination of 1,2-dichloroethane is studied. A higher activity and ethylene selectivity are observed for the cubic phase compared to the tetragonal phase, indicating the significant enhancement of electrocatalytic performance by the cubic crystal structure. The octahedral Fe atom on the surface of cubic CuFe2O4(311) is identified as the active site responsible for ethylene production with an energy barrier of 0.40 eV. This work highlights the importance of crystal phase engineering for optimizing electrocatalytic performance and provides an efficient strategy for the development of advanced electrocatalysts.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Physical

An intrinsic descriptor of perovskite cobaltites for catalytic peroxymonosulfate activation toward water remediation

Kai Wang, Chen Han, Fuping Li, Yu Liu, Zongping Shao, Lihong Liu, Shaobin Wang, Shaomin Liu

Summary: A series of strontium cobaltite perovskite oxides with different dopants were designed and investigated for their catalytic activity in degrading aqueous organic pollutants. The study found that the crystalline structure and surface properties of the oxides are correlated with their catalytic activity, with the Co-O bond length being a key factor in peroxymonosulfate (PMS) activation. This study provides new insights for the design of efficient perovskite oxide catalysts.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Engineering, Chemical

Sintering of the Metallic Nickel Hollow Fibers into High-Performance Membranes for H2 Permeation

Chenyang Deng, Zhifei Hu, Mingming Wang, Yanan Wang, Zhigang Wang, Tianjia Chen, Xiaoyao Tan, Shaomin Liu

Summary: The sintering process is crucial for nickel hollow fiber membranes (NHFMs), and optimizing the sintering conditions significantly affects the hydrogen permeability and qualified rate of the membranes. This study extensively investigates the effects of sintering conditions on microstructure and hydrogen permeation of NHFMs. Results show that smaller metal grain size leads to enhanced hydrogen permeability, and sintering temperatures significantly affect the grain size and activation energy. Increasing sintering time and hydrogen concentration have minor effects on grain size and hydrogen permeation.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Engineering, Chemical

Rational Design of Hierarchical Alloy-Containing Z-Scheme Catalytic Materials toward Effective Conversion of Nitric Oxide Toxic Species under Mild Conditions

Zhiyuan Liu, Shiying Fan, Xinyong Li, Zhaodong Niu, Jing Wang, Chunpeng Bai, Jun Duan, Moses O. Tade, Shaomin Liu

Summary: We demonstrate a composite photocatalyst for nitric oxide conversion with a Cu-Fe alloy, graphitic carbon nitride (g-C3N4), and ZnIn2S4. The superior photocatalytic performance of 6.45-fold that of g-C3N4 was confirmed. The delay effect on charge recombination was observed through time-resolved photoluminescence, and heterojunction establishment was attributed to the hole-trapping ability of ZnIn2S4. The combined effects of the Cu-Fe alloy were confirmed by NO-specific adsorption and conversion experiments, and the active species involved were examined via electron spin resonance. Density functional theory calculations revealed the molecular mechanisms of photocatalytic conversion of NO to NO3-. Therefore, g-C3N4|ZnIn2S4|CuFe has potential for sustainable and efficient pollutant conversion.

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH (2023)

Article Engineering, Environmental

Catalytic decomposition of methane for controllable production of carbon nanotubes and high purity H2 over LTA zeolite-derived Ni-based yolk-shell catalysts

Guoqiang Song, Claudia Li, Wenjun Zhou, Libo Wu, Kang Hui Lim, Feiyang Hu, Tianchang Wang, Shaomin Liu, Zhifeng Ren, Sibudjing Kawi

Summary: This study reports a structure-reconstruction strategy based on a micropore-confined process to prepare yolk-shell catalysts with highly dispersed metallic nickel. The size of the nickel particles has a significant impact on the rates of methane decomposition, penetration of dissolved carbon, and growth of carbon nanotubes (CNTs), which provides an important route for the design of functionalized CDM catalysts.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Chemical

Semi-hollow LTA zeolite membrane for water permeation in simulated CO2 hydrogenation to methanol

Guoqiang Song, Wenjun Zhou, Claudia Li, Zhigang Wang, Feiyang Hu, Tianchang Wang, Ziwei Li, Anjiang Tang, Michael P. Harold, Shaomin Liu, Sibudjing Kawi

Summary: In this study, a water-conducting LTA membrane with well-distributed non-penetrative macroholes was prepared, resulting in a cheese-like structure that combines the advantages of micro-nanochannels for high water selective permeability and macroholes for quick water diffusion. The optimized SH-LTA membranes showed high water permeability and good stability, with permeances of methanol, H2, and CO2. The dissolution-recrystallization route of the SH morphology was confirmed, and molecular dynamics simulations were used to elucidate the superior water separation behavior in the SH-LTA membrane compared to the pristine LTA membrane.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Engineering, Chemical

Highly selective and permeable β-cyclodextrin based polyester nanofiltration membranes maintaining good chlorine resistance

Wenjing Tang, Bojun Li, Huaqing Liu, Ting Liang, Pei Li, Changwei Zhao, Xiang Li, Shaomin Liu

Summary: In this study, ss-cyclodextrin based polyester membranes with superior chlorine resistance and antifouling properties were successfully developed. The optimized membrane exhibited excellent long-term stability, salt retention, and water permeability.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Materials Science, Ceramics

High flux and CO2 stable La0.6Ca0.4Co0.2Fe0.8O3-8 hollow fiber membranes through internal coagulation bath optimization

Yanyong Shi, Jie Wang, Claudia Li, Jian Song, Bo Meng, Jaka Sunarso, Xiuxia Meng, Naitao Yang, Xiaoyao Tan, Shaomin Liu

Summary: La0.6Ca0.4Co0.2Fe0.8O3-8 (LCCF) ceramic powder was used to fabricate LCCF hollow fiber (HF) membranes via a sol-gel method. Three types of LCCF HF membranes were developed by changing the composition of the internal coagulation bath. The best performance was achieved using a mixture of NMP + EtOH. The developed LCCF membrane exhibited high oxygen transport capability and good stability.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2023)

Article Engineering, Chemical

High oxygen production membranes by Ag catalytic surface modified BSCC perovskite

Christelle Yacou, Adrian Leo, Julius Motuzas, Simon Smart, Shude Zhang, Shaomin Liu, Joao C. Diniz da Costa

Summary: This study presents the preparation, characterization, and oxygen separation performance of catalytic surface modified BSCC perovskite hollow fibers. The BSCC hollow fibers were prepared by phase inversion and sintering, and then surface modified with Ag nanoparticles as a catalyst. The Ag-BSCC hollow fibers showed significantly higher oxygen fluxes compared to the blank BSCC hollow fibers.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Engineering, Chemical

High CO2-resistance Ag modified La0.8Ca0.2Fe0.94O3-6 hollow fiber membrane with a three-layer sandwich structure for oxygen separation

Zhengwei Zhou, Shude Zhang, Xiuxia Meng, Jian Song, Naitao Yang, Claudia Li, Sibudjing Kawi, Shaomin Liu

Summary: In this study, a La0.8Ca0.2Fe0.94O3-6-0.05Ag (LCF-Ag) hollow fiber membrane with three-layer sandwich structure was successfully prepared. The oxygen permeation flux of the membrane structure was 1.79 times higher than that of the traditional membrane structure, with a maximum oxygen flux of 2.15 mL min-1 cm-2. The membrane showed high stability during a 240-hour long-term operation, and the oxygen flux could be fully recovered by switching the sweep gas to He, indicating its good chemical stability. These results demonstrate the feasibility of the new membrane structure for oxygen separation with CO2 resistance.

SEPARATION AND PURIFICATION TECHNOLOGY (2023)

Article Chemistry, Inorganic & Nuclear

Ce0.8Y0.2O2-δ-BaCe0.8Y0.2O3-δ Dual-Phase Hollow Fiber Membranes for Hydrogen Separation

Yuepeng Hei, Zuojun Lu, Claudia Li, Jian Song, Bo Meng, Naitao Yang, Sibudjing Kawi, Jaka Sunarso, Xiaoyao Tan, Shaomin Liu

Summary: In this study, Ce0.8Y0.2O2-delta-BaCe0.8Y0.2O3-delta (YDC-BCY) hollow fiber (HF) membranes were developed and characterized for their hydrogen (H-2) permeation fluxes. By synthesizing YDC and BCY ceramic powders using the sol-gel method and fabricating YDC-BCY dual-phase ceramic HF membranes, it was found that the YDC/BCY molar ratio of 4:1 exhibited the highest hydrogen flux under certain conditions.

INORGANICS (2023)

Review Chemistry, Multidisciplinary

A review of water splitting via mixed ionic-electronic conducting (MIEC) membrane reactors

Bin Wang, Tao Li, Zhigang Wang, Mohd Hafiz Dzarfan Othman, Shaomin Liu, Rui Xiao

Summary: Hydrogen is a carbon-free energy carrier and water is an environmentally-friendly source for its production. Coupling catalytic water splitting with a mixed ionic-electronic conducting (MIEC) membrane reactor has shown great potential in enhancing hydrogen production. This review comprehensively covers critical aspects of this process, including materials, structure, morphology, catalysts, and operating conditions. Furthermore, integrating methane-related oxidation reactions can further intensify the process and improve the hydrogen production rate. Future development trends are also summarized.

GREEN CHEMISTRY (2023)

Article Chemistry, Physical

Preparation of BCYF0.10-YDC/BCYF0.10-Ni dual-layer hollow fiber membrane for dry reforming of methane and hydrogen purification

Jie Wang, Baolei Shao, Claudia Li, Jian Song, Bo Meng, Xiuxia Meng, Naitao Yang, Sibudjing Kawi, Jaka Sunarso, Xiaoyao Tan, Shaomin Liu

Summary: In this study, a ceramic hydrogen permeable membrane reactor was developed for the simultaneous reaction and separation process, allowing the production of synthesis gas and pure hydrogen while reducing greenhouse gas emissions.

CATALYSIS SCIENCE & TECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Effect of Cu-Doped Co-Mn Spinel for Boosting Low-Temperature NO Reduction by CO: Exploring the Structural Properties, Performance, and Mechanisms

Yu Qin, Shiying Fan, Jinsuo Gao, Moses O. Tade, Shaomin Liu, Xinyong Li

Summary: Cu-doped CoMn2O4 catalysts showed excellent catalytic performance in NO reduction by CO, with Cu0.3Co0.7Mn2O4 achieving 100% NO conversion and 80% N2 selectivity at 250 degrees C. Structural analysis revealed that the introduced Cu replaces some Co in tetrahedral coordination, resulting in a strong synergistic effect between different metals.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Dormancy and double-activation strategy for construction of high-performance mixed-matrix membranes

Shuo Li, Wei-Yao Han, Zhao-Xu Wang, Yu-Jie Sun, Zilong Zheng, Ming-Jie Yin, Shaomin Liu, Quan-Fu An

Summary: High MOF-loaded mixed-matrix membranes (MMMs) with enhanced gas separation performance were developed using a 'dormancy and double-activation' strategy. The optimized MMM showed significantly improved CO2 permeability and good anti-plasticization behavior, making it suitable for carbon capture applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Engineering, Environmental

Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX

Shun-Shun Chen, Xu-Xiu Chen, Tian-Yu Yang, Li Chen, Zheng Guo, Xing-Jiu Huang

Summary: A temperature-modulated sensing strategy was proposed to identify and determine BTEX compounds. Highly effective identification of BTEX was achieved using linear discrimination and convolutional neural network analyses. Additionally, quantitative analysis of concentration was accomplished by establishing the relationship between concentration and response.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease

Myungkyung Noh, Jeong Yeon Sim, Jisung Kim, Jee Hwan Ahn, Hye-Young Min, Jong-Uk Lee, Jong-Sook Park, Ji Yun Jeong, Jae Young Lee, Shin Yup Lee, Hyo-Jong Lee, Choon-Sik Park, Ho-Young Lee

Summary: This study reveals that chronic exposure to PM induces chronic inflammation and development of COPD by dysregulating NAD+ metabolism and subsequent SIRT1 deficiency in pulmonary macrophages. Activation of SIRT1 by resveratrol effectively mitigates PM-induced inflammation and COPD development. Targeting metabolic and epigenetic reprogramming in macrophages induced by PM is a promising strategy for COPD treatment.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Electrocatalytic degradation of nitrogenous heterocycles on confined particle electrodes derived from ZIF-67

Yu Liu, Linlin Qin, Yiming Qin, Tong Yang, Haoran Lu, Yulong Liu, Qiqi Zhang, Wenyan Liang

Summary: Co/NC/PAC electrode was prepared by compounding ZIF-67 with powder-activated carbon for the electrocatalytic treatment of nitrogen-containing heterocyclic compounds. The degradation efficiency of the four compounds reached 90.2-93.7% under optimal conditions, and the degradation order was pyridazine < pyrimidine < pyrazine < pyridine.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Yttrium speciation variability in bauxite residues of various origins, ages and storage conditions

Julien Couturier, Pierre Tamba Oulare, Blanche Collin, Claire Lallemand, Isabelle Kieffer, Julien Longerey, Perrine Chaurand, Jerome Rose, Daniel Borschneck, Bernard Angeletti, Steven Criquet, Renaud Podor, Hamed Pourkhorsandi, Guilhem Arrachart, Clement Levard

Summary: This study analyzes the properties of bauxite residue samples and explores the influence of bauxite ore origin, storage conditions, and storage time. The results show that the speciation of yttrium is related to the origin of bauxite ore, while no significant variation was observed with storage conditions or aging of the residues.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Trophic transfer and their impact of microplastics on estuarine food chain model

Sakthinarenderan Saikumar, Ravi Mani, Mirunalini Ganesan, Inbakandan Dhinakarasamy, Thavamani Palanisami, Dharani Gopal

Summary: Microplastic contamination in marine ecosystems poses a growing concern due to its trophic transfer and negative effects on marine organisms. This study investigates the transfer and impacts of polystyrene microplastics in an estuarine food chain. The results show that microplastics can be transferred through the food chain, although the transfer rates are low. The exposed organisms exhibit stress responses, suggesting the potential risk of microplastics reaching humans through the food chain.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Review Engineering, Environmental

Antibiotic resistance genes and heavy metals in landfill: A review

Yan-Jiao Li, Ying Yuan, Wen-Bing Tan, Bei-Dou Xi, Hui Wang, Kun-Long Hui, Jia-Bao Chen, Yi-Fan Zhang, Lian-Feng Wang, Ren-Fei Li

Summary: This review investigated and analyzed the distribution, composition, and abundance of heavy metals and antibiotic resistance genes (ARGs) in landfill. The results showed that heavy metals have lasting effects on ARGs, and complexes of heavy metals and organic matter are common in landfill. This study provides a new basis to better understand the horizontal gene transfer (HGT) of ARGs in landfill.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

The effect of synthesis conditions on the in situ grown MIL-100(Fe)-chitosan beads: Interplay between structural properties and arsenic adsorption

Jessy Joseph, Ari Vaisanen, Ajay B. Patil, Manu Lahtinen

Summary: Efficient and environmentally friendly porous hybrid adsorbent beads have been developed for the removal of arsenic from drinking water. The structural tuning of the adsorbents has been shown to have a significant impact on their adsorption performance, with high crystallinity leading to increased adsorption capacity and selectivity towards As5+.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Phthalate metabolites in breast milk from mothers in Southern China: Occurrence, temporal trends, daily intake, and risk assessment

Yangyang Liu, Minhua Xiao, Kaiqin Huang, Juntao Cui, Hongli Liu, Yingxin Yu, Shengtao Ma, Xihong Liu, Meiqing Lin

Summary: This study measured the levels of phthalate metabolites in breast milk collected from mothers in southern China. The results showed that phthalates are still prevalent in the region, and breastfeeding contributes to phthalate intake in infants. However, the levels detected do not pose significant health risks to infants based on dietary exposure. The increasing exposure to certain phthalates calls for further research into their sources and potential risks.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Depth significantly affects plastisphere microbial evenness, assembly and co-occurrence pattern but not richness and composition

Zhiqiang Wu, Jianxing Sun, Liting Xu, Hongbo Zhou, Haina Cheng, Zhu Chen, Yuguang Wang, Jichao Yang

Summary: Ocean depth affects microbial diversity, composition, and co-occurrence patterns of microplastic microbial communities. Deterministic processes dominate the assembly of mesopelagic plastisphere microbial communities, while stochastic processes shape the assembly of bathypelagic microbial communities. The relationships between microorganisms in the mesopelagic layer are more complex and stable, with Proteobacteria and Actinobacteriota playing important roles.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction

Tingting Xiao, Renjie Chen, Chen Cai, Shijie Yuan, Xiaohu Dai, Bin Dong, Zuxin Xu

Summary: Based on the efficiency of catalytic ozonation techniques in enhancing sludge dewaterability, this study investigated its effectiveness in simultaneous reduction of antibiotics and antibiotic resistance genes. The results showed that catalytic ozonation conditioning changed the distribution of antibiotics and achieved high degradation rates. It also significantly reduced the abundance of ARGs, inhibited horizontal gene transfer, and decreased the signal transduction of typical ARGs host bacteria.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Unlocking the potential of ferrate(VI) in water treatment: Toward one-step multifunctional solutions

Yang Deng, Xiaohong Guan

Summary: This article discusses two different development approaches for ferrate(VI) technology in water treatment, arguing that process integration is a promising method that can drive technological innovation and revolution in water treatment, achieving higher treatment efficiency, reduced costs and energy consumption, and a smaller physical footprint.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Floating Catalytic Foam with prominent heat-induced convection for the effective photocatalytic removal of antibiotics

Zhe Zhang, Lu Zhang, Zhihao Huang, Yuxin Xu, Qingqing Zhao, Hongju Wang, Meiqing Shi, Xiangnan Li, Kai Jiang, Dapeng Wu

Summary: In this study, a floating catalytic foam was designed and prepared to enhance the mass transfer in immobilized photocatalysts for wastewater treatment. The floating catalytic foam could float on the water surface and establish a temperature gradient, effectively promoting the diffusion and adsorption of target molecules during the photocatalytic process.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Mechanism and synergistic effect of sulfadiazine (SDZ) and cadmium toxicity in spinach (Spinacia oleracea L.) and its alleviation through zinc fortification

Muhammad Nafees, Adiba Khan Sehrish, Sarah Owdah Alomrani, Linlin Qiu, Aasim Saeed, Shoaib Ahmad, Shafaqat Ali, Hongyan Guo

Summary: The accumulation of cadmium and antibiotics in edible plants and fertile soil is a worldwide problem. This study investigated the potential of zinc oxide nanoparticles to alleviate the toxicity of both cadmium and antibiotics and promote spinach growth.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Aminoalkyl organosilicon with dual chemical sites for SO2 absorption and analysis of site-specific absorption entropy and enthalpy

Lurui Wan, Kai Wang, Yuan Chen, Zhiyong Xu, Wenbo Zhao

Summary: In this study, a low viscosity and high thermal stability SO2 absorbent with dual interacting sites was successfully synthesized. The absorbent showed the highest absorption enthalpy change and entropy change values among reported SO2 absorbents, and exhibited lower viscosity and comparable thermal stability to ILs.

JOURNAL OF HAZARDOUS MATERIALS (2024)

Article Engineering, Environmental

Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism

Zhengwei Zhou, Guojie Ye, Yang Zong, Zhenyu Zhao, Deli Wu

Summary: This study utilized Mo powder and STPP to enhance the performance of the sodium percarbonate system in pollutant degradation. The presence of Mo and STPP resulted in a higher degradation rate of the model pollutant SMX, with low oxidant consumption. The system generated multiple active species through a series of chain reactions at different pH values, exhibiting excellent performance towards electron-rich pollutants. Furthermore, Mo demonstrated excellent stability and reusability.

JOURNAL OF HAZARDOUS MATERIALS (2024)