4.7 Article

Characterization of Klebsiella isolates obtained from clinical mastitis cases in dairy cattle

Journal

JOURNAL OF DAIRY SCIENCE
Volume 103, Issue 4, Pages 3392-3400

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2019-17324

Keywords

cattle; clinical mastitis; Klebsiella; Raoultella

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada (Ottawa, Canada) [RGPIN-191461]
  2. NSERC
  3. Regroupement de Recherche Pour un Lait de Qualite Optimale (Op+Lait
  4. Universite de Montreal, Saint-Hyacinthe, Canada)

Ask authors/readers for more resources

Klebsiella spp. are important opportunistic pathogens commonly defined as environmental clinical mastitis agents. Despite Klebsiella mastitis being clinically impairing in cows and costly to the industry, only a few studies describe Klebsiella isolated from mastitis cases. The aim of this work was to characterize species of Klebsiella involved in clinical mastitis cases in Canada. Klebsiella isolated from clinical mastitis cases (n = 53) were identified to the species level using a biochemical test panel and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The rpoB gene sequence was used as the gold standard method and identified Klebsiella pneumoniae (n = 40), Klebsiella oxytoca (n = 9), Raoultella oraithinolytica (n = 2), and Raoultella planticola (n = 2). Raoultella, a genus closely related to Klebsiella, was also accurately identified using mass spectrometry but not via biochemical testing. Using the disc diffusion technique, 31 (58%) isolates were found to be susceptible to all antimicrobials tested (n = 18). The remaining 22 (42%) isolates were re- sistant to 1 or more of the following antimicrobials: kanamycin (2%), streptomycin (38%), spectinomycin (13%), sulfisoxazole (13%), and tetracycline (19%). The following antimicrobial resistance genes were identified: tetA, tetB, salt, strA/strB, and aadA. Random amplified polymorphic DNA revealed the majority of our isolates as unrelated and having different patterns, indicating environmental contamination as the primary source of infection. All isolates were shown to be biofilm producers. In conclusion, although antimicrobial resistance was low for both Klebsiella and Raoultella species, genetically related Klebsiella spp. isolates appeared to be more resistant.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available