4.7 Article

Tribological properties of microporous polydimethylsiloxane (PDMS) surfaces under physiological conditions

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 561, Issue -, Pages 220-230

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.11.082

Keywords

Tribology; Polymers; Microtexture; Mucins; Protein lubrication

Funding

  1. Netherlands Organization for Health Research and Development (ZonMW) [91112026]
  2. University of Medical Genter, Groningen, the Netherlands

Ask authors/readers for more resources

Textured biomaterials have been extensively used in biomedical engineering to modulate mammalian and bacterial cell adhesion and proliferation, implant integration with human body and infection prevention. However, the tribological implications of texturing under wet physiological conditions have not been well quantified. This study aimed to characterize the tribological properties of micropore-textured polydimethylsiloxane (PDMS) under physiological conditions and investigate the effect of adsorbed lubricious molecules on friction. In this study, untextured and micropore-textured PDMS surfaces were slid against curved smooth glass surfaces under the contact pressures of 10-400 kPa, sliding speeds of 0.1-5 mm/s in aqueous solutions with the viscosity of 1-1000 mPa.s. Reconstituted human whole saliva (RHWS) at pH 7 and porcine gastric mucin (PGM) at both pH 2 and 7 were used as lubricious coatings on PDMS. While the micropore-texturing delayed the transition of lubrication regimes, it increased the coefficient of friction (COF). Although RHWS and PGM coatings decreased the COF significantly, the protein coatings could not help the COF of micropore-textured surfaces getting lower than that of untextured surfaces. The results suggest textured polymeric surfaces could generate larger friction under physiological conditions and lead to a higher chance of inflammation near the implants. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available