4.8 Article

B2O3@BPO4 sandwich-like hollow spheres as metal-free supported liquid-phase catalysts

Journal

JOURNAL OF CATALYSIS
Volume 381, Issue -, Pages 599-607

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2019.11.028

Keywords

Sandwich-like hollow spheres; Metal-free; Supported liquid-phase catalysts; B2O3@BPO4; Oxidative dehydrogenation

Funding

  1. National Natural Science Foundation of China [U1662112, 21273038, 21543002, 11305091]
  2. Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment [SKLPEE-KF201703, SKLPEE-KF201807]
  3. Fuzhou University

Ask authors/readers for more resources

Supported liquid-phase catalysts (SLPCs) combine the advantages of homogenous liquid-phase catalysts and heterogeneous catalysis (e.g., controllability of active centers and efficient product-catalyst separation). Generally, SLPCs manifest as a liquid-phase catalyst film or droplet adsorbed onto the surface of a porous support, such as ionic liquid-phase catalysts. Here, we extend this idea and develop a solvent-free liquid-phase catalyst supported on hollow spheres. We report sandwich-like B2O3@BPO4 hollow spheres synthesized through a one-step template-free method. At reaction temperatures (>450 degrees C), melted B2O3 supported on the surface of BPO4 hollow spheres acts as a catalytically active species for the selective oxidative dehydrogenation of propane to propene, with an excellent productivity of 0.79 gC(3)H(6) g(cat)(-1) h(-1) and a high stability at 550 degrees C. We also found a phenomenon of tertiary aggregation during the formation of this sandwich-like hollow sphere. Additionally, the kinetic experiments indicate oxygen activation on the B2O3@BPO4 surface and second-order rate dependence with respect to the partial pressure of propane. This work may open a new avenue for the design and construction of metal-free oxides used as high-temperature SLPCs. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Physical

Robust PtRu catalyst regulated via cyclic electrodeposition for electrochemical production of cyclohexanol

Yifan Sun, Ye Lv, Wei Li, Jinli Zhang, Yan Fu

Summary: In this study, PtRu electrocatalysts were fabricated on carbon paper via cyclic electrodeposition for the electrocatalytic hydrogenation (ECH) of phenol. The Pt3Ru3 catalyst exhibited excellent activity and stability for the conversion of phenol to cyclohexanol at ambient temperature and various current densities. The in situ Raman spectroscopy and kinetic study revealed the hydrogenation mechanism of phenol over Pt3Ru3 in acidic electrolyte, providing an effective electrochemical strategy for the facile construction of durable electrode materials and efficient phenol hydrogenation.

JOURNAL OF CATALYSIS (2024)

Article Chemistry, Physical

Escalating the synergism on CdZnS via Ag2S/Cu2S co-catalysts: Boosts hydrogen evolution from water splitting under sunlight

Amir Shahzad, Khezina Rafiq, Muhammad Zeeshan Abid, Naseem Ahmad Khan, Syed Shoaib Ahmad Shah, Raed H. Althomali, Abdul Rauf, Ejaz Hussain

Summary: Photocatalytic hydrogen production through water splitting is an effective method for meeting future energy demands. In this study, researchers synthesized a 1 % Ag2S/Cu2S co-doped CdZnS catalyst and found that it can produce hydrogen at a higher rate. The co-doping of Ag2S and Cu2S in the CdZnS catalyst showed a synergistic effect, with Ag2S promoting oxidation reactions and Cu2S promoting reduction reactions.

JOURNAL OF CATALYSIS (2024)