4.7 Article

Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 44, Issue 6, Pages 4837-4850

Publisher

WILEY
DOI: 10.1002/er.5277

Keywords

combined spectral splitting; CPV; T; hybrid receiver; optical analysis; solar energy

Funding

  1. Jiangsu University
  2. China Postdoctoral Science Foundation [2019M661741]
  3. National Natural Science Foundation of China [51776091]

Ask authors/readers for more resources

Spectral beam splitting is a promising technology to achieve the maximum electrical and thermal outputs from concentrating photovoltaic/thermal (CPV/T) systems simultaneously. In this article, a novel CPV/T receiver is proposed by incorporating a fluid based filter together with a solid absorptive filter. The geometry of the receiver is developed for a designed linear flat mirror concentrator. According to the optical transmittance of both fluid based filters and solid absorptive filters, as well as their corresponding merit functions, four fluid filters and two solid filters are determined to be the candidates of the combined filter for the silicon concentrator solar cell. Then, a complete solar radiation propagation process from concentrator to the designed CPV/T receiver is simulated using ray tracing software-LightTools. The results show that the surface illumination uniformity of the PV module filtered by each combined filter under the linear flat mirror concentrator is higher than 96%. Using 5 g/L CoSO4 solution and HB650 as the combined filter, 33.67% of the concentrated light can be directed to the PV module with the remainder collected by the filter as thermal energy and the silicon CPV cells can convert 27.06% of this energy into electrical power. This contributes to the fact that 92.43% of the light striking the PV module is within 650-1100 nm, which is the spectral response range of the cell can work efficiently. The total efficiency of 49.88% can be achieved with such a filter and the electrical efficiency is 9.1% with respect to the total incident power on the receiver.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available