4.7 Article

Improving the performance of sulfonated polymer membrane by using sulfonic acid functionalized hetero-metallic metal-organic framework for DMFC applications

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 44, Issue 3, Pages 1673-1684

Publisher

WILEY
DOI: 10.1002/er.4981

Keywords

DMFC; hetero-metal MOF; metal-organic frameworks; proton conductivity; proton exchange membrane

Funding

  1. National Natural Science Foundation of China [51773118]
  2. Shenzhen Science & Technology research Bureau [JCYJ20170818093417096]
  3. Natural Science Foundation of Guangdong Province [2015A030313546]

Ask authors/readers for more resources

Proton transport played a crucial part in the fuel cells, sensors, and batteries. The electrolyte used in fuel cells should possess high proton conductivity and good chemical stability. Herein, taking advantage of the high proton conductivity of metal-organic framework (MOF) and the good chemical stability of branched polymers, a new heterometallic mediated MOF (Zr-Cr-SO3H) is synthesized and utilized as a filler in the highly branched sulfonated polymer (BSP). In addition, Zr-SO3H MOF is also prepared for comparison. Transmission electron microscope study shows that the prepared MOF particles are spherical in size and interconnected through nanosheets. The optimized quantity of MOFs inside the polymer matrix improves the water sorption, mechanical property, and proton conductivity. The composite membranes display an improved open-circuit voltage than the pristine BSP membrane. By comparing the Zr-SO3H MOF incorporated composite membrane, Zr-Cr-SO3H MOF incorporated composite membranes display higher proton conductivity and peak power density in a single-cell test. In particular, the single-cell fabricated with Zr-Cr-SO3H MOF incorporated composite membrane is able to reach the peak power density of 64.6 mWcm(-2) at 60 degrees C, which is 26% greater than the Nafion 212 membrane. Furthermore, this work offers a new strategy for the utilization of hetero-metal MOF as a filler for proton exchange membrane applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available