4.7 Article

Liquid Exfibration and Optoelectronic Devices of Fibrous Phosphorus

Journal

INORGANIC CHEMISTRY
Volume 59, Issue 2, Pages 976-979

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.inorgchem.9b03188

Keywords

-

Funding

  1. NSFC [51972006, 61922005, 61575010, 517671006]
  2. NSAF [U1930105]
  3. BNSF [4162016]
  4. Fundamental Research Funds for the Central Universities [PXM2019_014204_500032]

Ask authors/readers for more resources

Quasi-one-dimensional (QID) semiconductor materials, such as carbon nanotubes, SbSI, MP15 (M = Li, Na, K), and selenium and tellurium nanowires, show amazing potential for applications in future nanoelectronic and optoelectronic devices. However, intricate chirality in the structure of carbon nanotubes limits their applications. Also, the performance of MP15 in optoelectronics has yet to be extensively explored. One new Q1D semiconductor material, fibrous phosphorus (FP), has recently received attention because its raw material is less toxic. However, the ability to characterize FP by phase identification is limited in the assessment of micro/nano-thickness, such as exfibrated FP. So, identifying a precise Raman spectrum will allow for much better characterization. Here, a sufficiently sharp Raman spectrum of FP was obtained and analyzed. Moreover, we demonstrated that high-quality, few-layer FP fibers with thicknesses as low as 5.55 nm can be produced by liquid-phase exfibration under ambient conditions in solvents. More importantly, an optoelectronic detector based on a single FP fiber field-effect-transistor configuration was investigated. A rise time as short as about 40 ms was obtained for the FP transistors, illustrating the potential of FP single bundle crystals as a new one-dimensional material for optoelectronic device applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available