4.7 Article

Broad-scale patterns of the Afro-Palaearctic landbird migration

Journal

GLOBAL ECOLOGY AND BIOGEOGRAPHY
Volume 29, Issue 4, Pages 722-735

Publisher

WILEY
DOI: 10.1111/geb.13063

Keywords

annual cycle; climate change; continentality; geolocator; long-distance migrant; migration speed; NDVI; phenology; spring green-up

Ask authors/readers for more resources

Aim Knowledge of broad-scale biogeographical patterns of animal migration is important for understanding ecological drivers of migratory behaviours. Here, we present a flyway-scale assessment of the spatial structure and seasonal dynamics of the Afro-Palaearctic bird migration system and explore how phenology of the environment guides long-distance migration. Location Europe and Africa. Time period 2009-2017. Major taxa studied Birds. Methods We compiled an individual-based dataset comprising 23 passerine and near-passerine species of 55 European breeding populations, in which a total of 564 individuals were tracked during migration between Europe and sub-Saharan Africa. In addition, we used remotely sensed primary productivity data (the normalized difference vegetation index) to estimate the timing of vegetation green-up in spring and senescence in autumn across Europe. First, we described how individual breeding and non-breeding sites and the migratory flyways link geographically. Second, we examined how the timing of migration along the two major Afro-Palaearctic flyways is tuned with vegetation phenology at the breeding sites. Results We found the longitudes of individual breeding and non-breeding sites to be related in a strongly positive manner, whereas the latitudes of breeding and non-breeding sites were related negatively. In autumn, migration commenced ahead of vegetation senescence, and the timing of migration was 5-7 days earlier along the Western flyway compared with the Eastern flyway. In spring, the time of arrival at breeding sites was c. 1.5 days later for each degree northwards and 6-7 days later along the Eastern compared with the Western flyway, reflecting the later spring green-up at higher latitudes and more eastern longitudes. Main conclusions Migration of the Afro-Palaearctic landbirds follows a longitudinally parallel leapfrog migration pattern, whereby migrants track vegetation green-up in spring but depart before vegetation senescence in autumn. The degree of continentality along migration routes and at the breeding sites of the birds influences the timing of migration on a broad scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available