4.7 Article

Hydrophobic cell-wall barriers and vacuolar sequestration of Na+ ions are among the key mechanisms conferring high salinity tolerance in a biofuel tree species, Pongamia pinnata L. pierre

Journal

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
Volume 171, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2019.103949

Keywords

Biseriate exodermis; Lignin; Multiseriate exodermis; Na+ localization; Photosynthetic performance; Pongamia pinnata; Salt tolerance; Suberin lamellae

Funding

  1. Department of Biotechnology [BT/PR12024/BCE/8/1097/2014]

Ask authors/readers for more resources

Gradual soil-salinization is enhancing the proportion of non-arable salinized land areas. Developing strategies to utilize salinized lands for balanced economical productivity are highly desirable. Salt-tolerating Pongamia pinnate has gained significant attraction as a potential biofuel tree species and hence, could act as an efficient energy- crop alternative for cultivation in salinized lands. However, mechanisms conferring salt-tolerance to Pongamia are not yet demonstrated. It is highly crucial to understand the tolerance mechanisms for future breeding purposes for enhanced productivity under saline conditions. Hydroponically grown 30 days old seedlings of Pongamia are treated with two different salt concentrations (300 and 500 mM NaCl) for 8 days and analysed at regular intervals of 1, 4 and 8 days after salt exposure. Physiological parameters were recorded using infrared gas analyser and portable mini -PAM. Ion (Na+ K+, Cl-, and Ca2+) accumulation in leaves and roots were analysed through atomic absorption spectroscopy and Na+ localization was tracked through confocal laser scanning microscopy. Histochemical detection of lignin and suberin depositions in leaves and roots were carried out. Pongamia roots act as ultra-filters/strong barriers to avoid accumulation of excess Na+ levels in the leaves. The Na+ probe fluorescence analysis demonstrated effective vacuolar sequestration of Na+ in the roots. Formation of suberized multiseriate exodermis in the roots, along with extensive lignification maximized water permeability in both leaves and the roots. The present study clearly demonstrates the key cellular mechanisms conferring salinity tolerance in P. pinnata, which can be sustainably grown in salinized marginal lands as a potential biofuel tree species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Biochemistry & Molecular Biology

Physiological and molecular insights into the high salinity tolerance of Pongamia pinnata (L.) pierre, a potential biofuel tree species

Sureshbabu Marriboina, Debashree Sengupta, Sumit Kumar, Attipalli R. Reddy

PLANT SCIENCE (2017)

Article Agriculture, Multidisciplinary

Pod-wall proteomics provide novel insights into soybean seed-filling process under chemical-induced terminal drought stress

Debashree Sengupta, Divya Kariyat, Sureshbabu Marriboina, Attipalli R. Reddy

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE (2019)

Article Agricultural Engineering

Dynamics of metabolites and key regulatory proteins in the developing seeds of Pongamia pinnata, a potential biofuel tree species

Kambam Tamna Singha, Rachapudi Venkata Sreeharsha, Sureshbabu Mariboina, Attipalli Ramachandra Reddy

INDUSTRIAL CROPS AND PRODUCTS (2019)

Article Biotechnology & Applied Microbiology

GUS-reporter based analysis of the promoter activity of Gossypium hirsutum NAC transcription factor, GhNAC4 that is induced by phytohormones and environmental stresses

Vikas Shalibhadra Trishla, Sureshbabu Marriboina, Prasanna Boyidi, Pulugurtha Bharadwaja Kirti

PLANT CELL TISSUE AND ORGAN CULTURE (2020)

Article Plant Sciences

Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone-metabolic network

Sureshbabu Marriboina, Kapil Sharma, Debashree Sengupta, Anurupa Devi Yadavalli, Rameshwar Prasad Sharma, Ramachandra Reddy Attipalli

Summary: Under salinity stress, Pongamia demonstrates adaptive mechanisms such as significant changes in levels of cytokinins and jasmonic acid, as well as alterations in metabolites and antioxidant gene expression in leaves and roots. This study provides new insights into the molecular and metabolic adaptations that confer salinity tolerance to Pongamia.

PHYSIOLOGIA PLANTARUM (2021)

Article Plant Sciences

Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress

Jayendra Pandey, Elsinraju Devadasu, Deepak Saini, Kunal Dhokne, Sureshbabu Marriboina, Agepati. S. S. Raghavendra, Rajagopal Subramanyam

Summary: This study found that the effects of drought on photosynthesis have been extensively studied, but the effects on thylakoid organization are limited. The research observed a significant decline in gas exchange parameters and a reduction of photochemical efficiency of photosystem II and I in pea leaves under progressive drought stress. Furthermore, the study found changes in the organization of light-harvesting complexes and reductions in supercomplexes of thylakoids in drought-affected plants.

PLANT JOURNAL (2023)

Article Multidisciplinary Sciences

Optimization of hydroponic growth system and Na+-fluorescence measurements for tree species Pongamia pinnata (L.) pierre

Sureshbabu Marriboina, Ramachandra Reddy Attipalli

METHODSX (2020)

Article Plant Sciences

Photosynthetic performance and sugar variations during key reproductive stages of soybean under potassium iodide-simulated terminal drought

D. Sengupta, S. Marriboina, D. K. Unnikrishnan, A. R. Reddy

PHOTOSYNTHETICA (2019)

Article Plant Sciences

Wheat MEDIATOR25, TaMED25, plays roles in freezing tolerance possibly through the jasmonate pathway

Jingqiu Xia, Jiawen Liang, Mengmeng Yu, Rui Wang, Chen Sun, Huishan Song, Qinghua Xu, Jing Cang, Yuying Wang, Da Zhang

Summary: The MED complex acts as a bridge to regulate transcription by connecting transcription factors and specific gene promoters. This study demonstrates the important role of MED25 in freezing tolerance in wheat, possibly through its interaction with the jasmonate signaling pathway and cold-responsive genes.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Resource availability and herbivory alter defence-growth-reproduction trade-offs in a masting Mediterranean pine

Asier R. Larrinaga, Luis Sampedro, Rafael Zas

Summary: This study investigated the allocation to growth, reproduction, and defence in maritime pine under different resource availability and simulated herbivory treatments. The results showed that fertilization increased tree growth and seed quantity but not seed quality. Needle clipping and methyl-jasmonate treatment increased needle resin and phenol concentrations. Overall, there were complex interactions among the life-history dimensions, suggesting that pairwise approaches are insufficient to unravel these complexities.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

The Chrysanthemum morifolium β-carotene hydroxylase gene CmBCH1 promotes tolerance to high light by enhancement of the xanthophyll cycle

Shuang Han, Shuxian Li, Ya Li, Qingchen Zhang, Yuanyuan Xu, Wenjing Wang, Xiao Qin Zhu, Dongli Pei

Summary: The xanthophyll cycle plays a significant role in protecting plants from membrane peroxidation induced by intense light exposure. This study identified 240 differentially expressed genes associated with respiratory chain, lipid metabolism, antioxidant activity, and flavonoid metabolism. The overexpression of the CmBCH1 gene resulted in the upregulation of genes involved in scavenging reactive oxygen species and encoding antioxidants, leading to the accumulation of xanthophyll, zeaxanthin, chlorophylls, and anthocyanins. The study highlighted the potential of BCH1 in regulating the xanthophyll cycle and enhancing tolerance to intense light stress in transgenic plants.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Enhanced phytoremediation of PCBs-contaminated soil by co-expressing tfdB and bphC in Arabidopsis aiding in metabolism and improving toxicity tolerance

Yuzhu Ding, Hejun Ren, Xinyu Hao, Ruonan Zhang, Jianjun Hao, Jinliang Liu, Hongyu Pan, Yan Wang

Summary: This study demonstrated that co-expressing two exogenous genes, tfdB and bphC, in Arabidopsis thaliana improved the tolerance and removal efficiency of PCB28. Transgenic plants also exhibited increased enzymatic activities under PCB28 stress. The co-expression of tfdB and bphC in A. thaliana resulted in nearly twofold increase in PCB28 removal rates from soil. This research suggests that co-expressing two genes holds great potential for enhancing phytoremediation efficiency and mitigating PCB-induced toxicity stress on plants.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

The intricate world of trichome development: From signaling pathways to transcriptional regulation

Nosheen Kabir, Sumbal Wahid, Shoaib Ur Rehman, Ghulam Qanmber

Summary: Trichomes are specialized plant structures that protect plants and are regulated by complex gene networks and signaling pathways. Gene expression, cell cycle regulation, and differentiation determine whether cells become trichomes. Transcription factors, epigenetic modifications, and phytohormones play important roles in trichome development. The integration of phytohormonal and transcriptional networks contributes to the diversity and adaptability of trichomes in plants.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Soil microorganisms buffer the reduction in plant growth and physiological performance under combined abiotic stress in the halophyte Salicornia ramosissima

Enrique Mateos-Naranjo, Jesus Alberto Perez-Romero, Giacomo Puglielli, Javier Lopez-Jurado, Jennifer Mesa-Marin, Eloisa Pajuelo, Ignacio David Rodriguez-Llorente, Susana Redondo-Gomez

Summary: The impact of multifactorial abiotic stress combinations on plant functional responses remains controversial. The halophyte Salicornia ramosissima showed unique functional responses depending on the specific stress factors involved. Under extreme conditions, there was a more negative impact on plant functional traits, but the presence of beneficial microorganisms, especially in combination with elevated atmospheric CO2 concentration, mitigated these negative effects.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Alternative oxidase 2 influences Arabidopsis seed germination under salt stress by modulating ABA signalling and ROS homeostasis

Mengjiao Ruan, Wenliang He, Rui He, Xiangxiang Wang, Jinxin Wei, Yujie Zhu, Ruiling Li, Zhijun Jiang, Xiaofan Na, Xiaomin Wang, Yurong Bi

Summary: The study reveals the important role of AOX2 in Arabidopsis seed germination by regulating ABA signal and ROS homeostasis under salt stress. Additionally, ABI3/ABI4 are essential for salt-induced AOX2 expression.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Characterization of epigenetic modifications in a plant-specific glutaredoxin-mediated repression of stress-responsive gene expression

Ning Li, Peiyao Yu, Yanling Zeng, Jiali Chen, Wenhai Yang, Guannan Qin, Shenxiu Du, Xiao Han, Li-Jun Huang

Summary: In eukaryotic cells, epigenetic modifications of DNA and histones play a crucial role in gene expression regulation. ROXY19, a plant-specific CC-type glutaredoxin, was found to strongly repress a subset of genes regulated by class II TGA factors through its association with the TPL/TPR family. The ectopic expression of ROXY19 in Arabidopsis plants led to hypersensitivity to xenobiotic chemicals due to the silencing of detoxification pathway genes.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

The NIN-LIKE PROTINE1 (CsNLP1) transcription factor is involved in modulating the nitrate response in cucumber seedlings

Yang Li, Chenyang Feng, Yijing Xing, Meng Li, Xiaoning Wang, Qingjie Du, Huaijuan Xiao, Juanqi Li, Jiqing Wang

Summary: In this study, researchers found that CsNLP1 gene in cucumber plays an important role in nitrogen utilization. The study also revealed the regulation mechanism of CsNLP1 in cucumber growth and nitrogen assimilation.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Genome-wide identification of C2H2-ZFPs and functional analysis of BcZAT12 and BcZAT10 under cold stress in non-heading Chinese cabbage

Lei Chen, Cheng Jiang, Li Ye, Yue Gao, Xilin Hou

Summary: This study identified and characterized 163 C2H2-type zinc finger proteins in non-heading Chinese cabbage. Two of these proteins, BcZAT12 and BcZAT10, were found to be closely related to cold tolerance and acted as transcriptional repressors in regulating cold resistance. Furthermore, BcZAT12 was shown to directly bind to the promoter of BcCBF1 and inhibit its activity. Additionally, interactions between BcZAT12 and other proteins such as BcABF2/4 were observed. These findings provide insights into the functional roles and regulatory mechanisms of C2H2-ZFPs in non-heading Chinese cabbage under cold stress.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Effect of Nano Biochar addition and deficit irrigation on growth, physiology and water productivity of quinoa plants under salinity conditions

Ommolbanin Tourajzadeh, Halimeh Piri, Amir Naserin, Mohammad mahdi Cahri

Summary: The combination of NB and reduced irrigation water depth can mitigate the negative effects of salinity and drought stresses on quinoa and improve its water productivity. The use of NB up to 2% alleviated salinity and drought stress and increased yield, while decreasing salinity and irrigation water depth increased water productivity. The appropriate use of NB can reduce the negative effects of stress and promote the sustainable production of quinoa.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Nonuniform salinity regulate leaf characteristics and improve photosynthesis of cherry tomatoes under high salinity

Jing Li, Yujie Wu, Xiaohui Feng, Tabassum Hussain, Kai Guo, Xiaojing Liu

Summary: This study investigated the growth and physiological responses of cherry tomatoes under different salt conditions and found that nonuniform salinity conditions improved photosynthetic characteristics, water use efficiency, and fruit yield. These findings are important for improving tomato productivity on salt-affected lands.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Auxin mediated elevated CO2-induced stolon growth and soluble sugar accumulation in creeping bentgrass

Ruonan Li, Ruying Wang, Meng Li, Yunpu Zheng, Xiaxiang Zhang, Zhimin Yang, Jingjin Yu

Summary: The study found that elevated CO2 can increase stolon growth and carbohydrate accumulation in stolon nodes and internodes. Foliar application of auxin enhances this effect, while auxin transport inhibitor has no effect.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

The universal and divergent roles of ethylene in rice and some other crop plants under salt stress

Jian-Jun Tao, Cui-Cui Yin, Yang Zhou, Yi-Hua Huang, Shou-Yi Chen, Jin-Song Zhang

Summary: Soil salinization is a major obstacle for agriculture sustainability, as it severely affects plant growth and crop yield. Ethylene, a stress hormone, plays a crucial role as a signal molecule in coordinating plant growth and stress response in the model plant Arabidopsis. However, the roles and mechanisms of ethylene in most crop plants under salinity remain undefined. This review summarizes the universal roles of ethylene and focuses on its divergent roles in rice and other crop species under salinity, particularly in terms of ethylene biosynthesis and signal transduction. The contradictions between ethylene production and signaling in salt response are also discussed.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)

Article Plant Sciences

Plant defense mechanisms against ozone stress: Insights from secondary metabolism

Chang Guo, Xiaona Wang, Qi Wang, Zipeng Zhao, Bing Xie, Lang Xu, Ruijie Zhang

Summary: This review provides an overview of the effects of ozone pollution on plant secondary metabolism. It explores the role of plant secondary metabolism in defense against ozone stress and adaptation to ozone-polluted environments, while summarizing the severity of ozone pollution.

ENVIRONMENTAL AND EXPERIMENTAL BOTANY (2024)