4.6 Article

3D CuCo2S4/NiCo2S4 core-shell composites as efficient bifunctional electrocatalyst electrodes for overall water splitting

Journal

ELECTROCHIMICA ACTA
Volume 326, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2019.135002

Keywords

CuCo2S4/NiCo2S4 core-shell; Composite electrodes; Water splitting; Hydrogen evolution reaction; Oxygen evolution reaction

Funding

  1. National High Technology Research and Development Program [2015AA050601]
  2. National Natural Science Foundation of China [11674252]
  3. Fundamental Research Funds for the Central Universities [2042019kf0317]

Ask authors/readers for more resources

Water splitting is a vital reaction for the storage of renewable energy, which requires highly active and steady catalysts to produce hydrogen and oxygen. While the development of efficiently stable bifunctional electrocatalysts for the simultaneous production of hydrogen and oxygen remains challenge. Herein, we show a simple multi-step process to prepare porous CuCo2S4/NiCo2S4 core-shell materials directly as bifunctional electrocatalyst electrodes for water splitting. The porous NiCo2S4-sheets combined with CuCo2S4-rods on nickel foam not only can provide for more active sites and higher specific surface area, but also maintain their structural integrity. At a current density of 10 mA cm(-2), the CuCo2S4/NiCo2S4 core-shell electrodes deliver lower overpotentials of 271 mV and 206 mV for the oxygen and hydrogen evolution reaction, respectively. The CuCo2S4/NiCo2S4 core-shell electrodes are successfully used as bifunctional electrocatalyst towards overall water splitting and showed overpotential of 1.66 V at the current density of 10 mA cm(-2). A approximate to 97% current density retention for 50 h is represented which illustrates the superior stability of this electrode material and water splitting device. Subsequently, a water splitting process is demonstrated using electrochemical cell based on CuCo2S4/NiCo2S4 core-shell electrodes driven by a perovskite solar cell module. H-2 and O-2 are generated. Our work here demonstrates the possibility of wide application of catalytic material to produce clean energy driven by perovskite solar cell. The work also illustrates the potential applications of CuCo2S4/NiCo2S4 core-shell nanometer materials for clean energy generation. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available