4.7 Article

Low doses of carbendazim and chlorothalonil synergized to impair mouse spermatogenesis through epigenetic pathways

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 188, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2019.109908

Keywords

Carbendazim; Chlorothalonil; Spermatogenesis; Epigenetic signalling pathways

Funding

  1. Key Research and Development Program of Shandong Province [2018GNC110005, 2017NC210007]
  2. National Natural Science Foundation of China [31772408]
  3. National Key Research and Development Program of China [2016YED0500500]

Ask authors/readers for more resources

Pesticides have been extensively produced and used to help the agricultural production which leads to the contamination of the environment, soil, groundwater sources, and even foodstuffs. Fungicides carbendazim (CBZ) and chlorothalonil (Chl) are widely applied in agriculture and other aspects. CBZ or Chl have been reported to disrupt spermatogenesis and decrease semen quality. However, it is not understood the effects of pubertal exposure to low doses of CBZ and Chl together, and the underlying mechanisms. Therefore, the aim of current investigation was to explore the negative impacts of pubertal exposure to low doses of CBZ and Chl together on spermatogenesis and the role of epigenetic modifications in the process. We demonstrated that CBZ and Chl together synergize to decrease sperm motility in vitro (CBZ 1.0 + Chl 0.1, CBZ 10.0 + CH1 1.0, CBZ 100.0 + Chl 10 mu M in incubation medium for 24 h) and sperm concentration and motility in vivo with ICR mice (CBZ 0.1 + Chl 0.1, CBZ 1.0 + CH1 1.0, CBZ 10.0 + Chl 10 mg/kg body weight; oral gavage for five weeks). CBZ + Chl significantly increase reactive oxygen species (ROS) and apoptosis by the increase in the protein level of caspase 8 in vitro. Moreover, CBZ + Chl synergized to disrupt mouse spermatogenesis with the disturbance in sperm production proteins and sperm proteins (VASA, A-Myb, STK31, AR, Acrosin). CBZ + Chl synergized to decrease the protein level of estrogen receptor alpha and the protein level of DNA methylation marker 5 mC in Leydig cells, and to increase the protein levels of histone methylation marker H3K9 and the methylation enzyme G9a in germ cells. Therefore, greater attention should be paid to the use of CBZ and Chl as pesticides to minimise their adverse impacts on spermatogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available