4.7 Article

Modelling uranium dioxide corrosion under repository conditions: A pore-scale study of the chemical and thermal processes

Journal

CORROSION SCIENCE
Volume 167, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.corsci.2020.108530

Keywords

Uranium dioxide; Corrosion; Reactive transport; Heat and mass transfer

Funding

  1. Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory (LANL) [20180007 DR]
  2. National Nuclear Security Administration of the U.S. Department of Energy [89233218CNA000001]

Ask authors/readers for more resources

This paper investigates the corrosion behaviors of spent uranium dioxide (UO2) fuel when placed in geological repositories. We performed pore-scale reactive transport simulations of the UO2 corrosion process in a defective fuel rod with different orientations of breach or fracture on its clad. It is found that the corrosion rate has strong dependency on the breach orientation. The highest corrosion rate of UO2 is calculated when the angle between the groundwater flow direction and the clad fracture reaches 180 degrees. UO2 corrosion simulations with different flow rates are compared. The results show the higher flow rate accelerates the corrosion of UO2 fuel. The effect of pH on the corrosion process is also determined. It is indicated that higher pH can limit the corrosion of UO2 by reducing the reaction rate. The dependence of reaction rate and time on reactive surface area is explored. Spent fuel with lower surface area demonstrates longer lifetime under corrosion conditions. A numerical model coupling thermal conduction and chemical reactions is developed to assess the impact of temperature on the process of UO2 corrosion. The results show that higher temperature leads to larger corrosion rates for UO2. The predicted reaction rates are higher in comparison with the isothermal results. Hence, our results can help improve the fundamental understanding of UO2 corrosion in geological repositories for long-term storage of spent nuclear fuels and provide guidance for the safe operations and selection of appropriate repositories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks

Feifei Qin, Jianlin Zhao, Qinjun Kang, Thomas Brunschwiler, Jan Carmeliet, Dominique Derome

Summary: Based on the numerical study, a higher initial nanoparticle concentration leads to larger and more numerous necks, resulting in increased effective thermal conductivity of the NTS. Drying temperature has minimal impact on the effective thermal conductivity of the resultant NTS, but neck size and distribution become more uniform at higher drying temperatures. Decreasing wettability of the cavity's top and bottom surfaces causes necks to shrink or disappear, while the size of necks between filler particles in the middle of the cavity slowly expands, leading to a decrease in the effective thermal conductivity of the NTS.

APPLIED THERMAL ENGINEERING (2021)

Article Chemistry, Physical

Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells

Li Chen, Qinjun Kang, Wenquan Tao

Summary: Understanding the interactions between multiphase flow and reactive transport processes in catalyst layers of proton exchange membrane fuel cells is crucial for achieving better performance and lower cost. Through pore-scale simulation, dynamic behaviors of liquid water and the interaction between multiphase flow and reactive transport processes can be successfully captured.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY (2021)

Article Engineering, Chemical

Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model

Jianlin Zhao, Feifei Qin, Qinjun Kang, Dominique Derome, Jan Carmeliet

Summary: In this work, a hybrid method coupling a pseudo-potential lattice Boltzmann model (LBM) and a pore network model (PNM) is proposed to simulate drying in porous media. By subdividing the porous medium into pore regions and using different models for different types of pores, the hybrid method combines the accuracy of LBM and the efficiency of PNM, leading to significant reduction of computation time in larger porous systems.

DRYING TECHNOLOGY (2022)

Review Thermodynamics

Pore-scale modeling of complex transport phenomena in porous media

Li Chen, An He, Jianlin Zhao, Qinjun Kang, Zeng-Yao Li, Jan Carmeliet, Naoki Shikazono, Wen-Quan Tao

Summary: This review summarizes the recent advances and challenges in pore-scale modeling, discussing its practical applications in geoscience, polymer exchange membrane fuel cells, and solid oxide fuel cells. Notable results from pore-scale modeling are presented, while the challenges facing the development of pore-scale models are also discussed.

PROGRESS IN ENERGY AND COMBUSTION SCIENCE (2022)

Article Engineering, Chemical

Numerical modeling of ion transport and adsorption in porous media: A pore-scale study for capacitive deionization desalination

Min Liu, John Waugh, Siddharth Komini Babu, Jacob S. Spendelow, Qinjun Kang

Summary: A pore-scale model is proposed to simulate ion transport and adsorption in CDI electrodes. The model considers the coupling among water flow, ion transport, and adsorption, and investigates the effects of electrode microstructure, electrical potential, and flow velocity on adsorption processes.

DESALINATION (2022)

Article Environmental Sciences

A Dynamic Pore Network Model for Imbibition Simulation Considering Corner Film Flow

Jianlin Zhao, Feifei Qin, Qinjun Kang, Chaozhong Qin, Dominique Derome, Jan Carmeliet

Summary: This study successfully simulates the dynamics of corner film flow in strongly wetting porous media using a modified interacting capillary bundle model (ICB) incorporated into a single-pressure dynamic pore network model (DPNM). The interaction between corner film and main meniscus flow in porous media is analyzed from a pore-scale perspective.

WATER RESOURCES RESEARCH (2022)

Article Multidisciplinary Sciences

A Dataset of 3D Structural and Simulated Transport Properties of Complex Porous Media

Javier E. Santos, Bernard Chang, Alex Gigliotti, Ying Yin, Wenhui Song, Masa Prodanovic, Qinjun Kang, Nicholas Lubbers, Hari Viswanathan

Summary: Physical processes in porous materials have various practical applications. However, approximating these processes numerically is computationally demanding due to the complex behavior arising from the intricate solid boundary conditions. This article introduces a large dataset of 3D geometries, simulation results, and structural properties of samples, which can be used for constructing models and validating simulation codes.

SCIENTIFIC DATA (2022)

Article Energy & Fuels

Shale fundamentals: Experimental and modeling insights

Mohamed Mehana, Javier E. Santos, Chelsea Neil, James William Carey, George Guthrie, Jeffery Hyman, Qinjun Kang, Satish Karra, Mathew Sweeney, Hongwu Xu, Hari Viswanathan

Summary: This article summarizes important findings and methods regarding shale reservoirs to improve hydrocarbon extraction efficiency and minimize environmental impact. By integrating fundamental knowledge and machine learning, a pathway to enhance model prediction capabilities is outlined, and science-based workflows and platforms for pressure-drawdown optimization, real-time management, and uncertainty quantification are presented.

ENERGY REPORTS (2022)

Article Energy & Fuels

Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs

Mohamed Mehana, Fangxuan Chen, Mashhad Fahes, Qinjun Kang, Hari Viswanathan

Summary: This study modeled a hydraulic fracture stage and found that geochemical interactions have a positive impact on the fate of reservoir fluids and well performance. Sea water shows promise as an alternative fracturing fluid, and lower-saline connate water improves well performance.

ENERGIES (2022)

Review Energy & Fuels

Minireview on Lattice Boltzmann Modeling of Gas Flow and Adsorption in Shale Porous Media: Progress and Future Direction

Jianlin Zhao, Junjian Wang, Guangqing Zhang, Dawei Zhou, Li Chen, Hari Viswanathan, Qinjun Kang

Summary: Shale gas reservoirs are an important unconventional resource with unique characteristics. The ultrasmall pore sizes in shale induce the nanopore confinement effect and gas adsorption. The lattice Boltzmann method (LBM) has been modified to simulate gas flow and adsorption in shale rocks, and four types of LBM models have been developed for this purpose. LBM can efficiently estimate shale gas permeability, describe pore-scale flow behaviors, and address the influence of gas adsorption, but challenges remain in its application for shale gas flow and adsorption simulations.

ENERGY & FUELS (2023)

Article Engineering, Civil

Competition between main meniscus and corner film flow during imbibition in a strongly wetting square tube

Jianlin Zhao, Feifei Qin, Linlin Fei, Chaozhong Qin, Qinjun Kang, Dominique Derome, Jan Carmeliet

Summary: In this study, an advanced modified interacting capillary bundle model (MICBM) is developed to simulate imbibition dynamics in a strongly wetting square tube. The wetting corner film development is found to be less significant compared to the main meniscus flow under different conditions. Parameters such as viscosity ratio between wetting and non-wetting fluids, driving force, gravity, and contact angle are shown to influence the development of the corner film.

JOURNAL OF HYDROLOGY (2022)

Article Mechanics

Pore-scale study of mineral dissolution in heterogeneous structures and deep learning prediction of permeability

Zi Wang, Li Chen, Hangkai Wei, Zhenxue Dai, Qinjun Kang, Wen-Quan Tao

Summary: This study simulated the reactive transport processes in porous media with dissolution of solid structures using the lattice Boltzmann method. Six dissolution patterns were identified under different Peclet and Damkohler numbers. The increase in heterogeneity intensified the wormhole phenomena and led to higher permeability. The study also found that permeability is more sensitive to the alteration of structural heterogeneity compared to specific surface area, and it is challenging to propose a general formula between permeability and porosity under different reactive transport conditions and structural heterogeneity. The use of deep neural network showed promising potential in predicting the complicated variations of permeability in heterogeneous porous media with dissolution of solid structures.

PHYSICS OF FLUIDS (2022)

Article Energy & Fuels

3D Thermal-Chemical Reactive Transport Modeling of Fluid-UO2 Reactions under Geological Repository Conditions

Min Liu, Qinjun Kang, Hongwu Xu, Joshua White

Summary: This study investigated the dissolution of uranium dioxide (UO2) under geological repository conditions using a three-dimensional thermal-chemical reactive transport model. The model considered the transport of chemical species, thermal conduction, and chemical dissolutions in UO2 fuel pellets. The study simulated UO2 dissolution at low and high temperatures, accounting for the changes in aqueous uranium species. The model can be used as a predictive tool for various applications.

JOURNAL OF ENERGY ENGINEERING (2023)

Article Mechanics

Lattice Boltzmann modelling of colloidal suspensions drying in porous media accounting for local nanoparticle effects

Feifei Qin, Linlin Fei, Jianlin Zhao, Qinjun Kang, Dominique Derome, Jan Carmeliet

Summary: A 2-D double-distribution lattice Boltzmann method (LBM) is implemented to study the isothermal drying process of a colloidal suspension considering the local effects of nanoparticles. The model is validated by comparing with experimental results for drying of suspended colloidal droplet and a colloidal suspension in a capillary tube. The influence of three local nanoparticle effects on drying dynamics, deposition process and final configurations is analyzed, and a unified relation is proposed and verified.

JOURNAL OF FLUID MECHANICS (2023)

Review Energy & Fuels

Minireview on Lattice Boltzmann Modeling of Gas Flow and Adsorption in Shale Porous Media: Progress and Future Direction

Jianlin Zhao, Junjian Wang, Guangqing Zhang, Dawei Zhou, Li Chen, Hari Viswanathan, Qinjun Kang

Summary: This review examines four lattice Boltzmann models developed for simulating shale gas flow/adsorption and discusses the current challenges in applying these models.

ENERGY & FUELS (2023)

Article Materials Science, Multidisciplinary

The effect of Fe in the rapid thermal explosion synthesis and the high-temperature corrosion behavior of porous Co-Al-Fe intermetallic

Zhichao Shang, Xiaoping Cai, Farshid Pahlevani, Yan Zheng, Akbar Hojjati-Najafabadi, Xinran Gao, Baojing Zhang, Peizhong Feng

Summary: High porosity Co-Al-Fe intermetallics with 3D-microstructures were successfully synthesized in one step via a thermal explosion reaction. The link between pore structure and permeability was investigated using 3D-XRM technology. The corrosion resistance of the samples with different Fe contents was studied at 900 degrees C under an oxygen/sulphur atmosphere for up to 120 h. The results showed that the samples maintained stable pore structure and intact internal matrices, attributed to the formation of a thin protective layer on the surface. In addition, inward diffusion of S resulted in the formation of FeS nodules.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation

Lian Ma, Hain Yang, Daquan Zhang, Wei Wu

Summary: In this study, an environmentally friendly volatile corrosion inhibitor, lysine salts (LA), was prepared between graphene oxide (GO) layers using an in situ intercalation technique. The corrosion inhibition effect of LA was evaluated, and it was found that LA-GO2 achieved a 99.3% corrosion inhibition efficiency after composition optimization. The inhibition of the electrochemical anodic process on the surface of mild steel was the main reason for the high corrosion inhibition efficiency of LA-GO2. The properties of the surface film on the corroded steel were also characterized in detail to understand the corrosion inhibition mechanism of LA-GO2.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Ablation of advanced C/C-ZrC-SiC leading edge composites

Running Wang, Jiaping Zhang, Bing Liu, Jie Fei, Qiangang Fu

Summary: By introducing a tailored SiC-C interphase, the carbon fiber can be effectively protected, improving the mechanical and ablation properties of leading edge shaped C/C-ZrC-SiC composites.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Surface modification and interface strengthening strategies for fly ash and its application in anti-corrosion coatings

Zihua Wang, Chijia Wang, Ruitao Wang, Jiapeng Deng, Kun Zhang, Yanji Zhu, Huaiyuan Wang

Summary: A robust anti-corrosive coating has been developed using functional fly ash, which demonstrates excellent corrosion resistance and improved mechanical properties. The coating achieves these enhancements through molecular cross-linking design and surface augmentation techniques, resulting in a significantly improved impedance modulus compared to pure polyurea coatings.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Phase transformation and diffusion in high-temperature oxidation of FeCrNi medium entropy alloy

Haofei Sun, Meifeng Li, Hao Zhang, Jing Liu

Summary: The oxidation behavior of FeCrNi medium entropy alloy was investigated through experimental observations and density functional theory (DFT) calculations. The study found that at 900 degrees C, the alloy forms a desirable and continuous oxide layer, while at 1000 degrees C, the oxide layer becomes discontinuous with penetration of oxide. These observations highlight the significant role of phase structure in promoting the formation of protective oxide scales and influencing oxidation resistance.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy

Yang Li, Ke Ma, Jingjun Xu, Jingjing Li, Yueming Li, Yi Zhang, Jun Zuo, Meishuan Li

Summary: Cr2AlC diffusion barrier effectively blocks the diffusion of Ti, enhancing the stability and spalling resistance of the Al2O3 scales between NiCrAlY coating and TiAl alloy.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Improved heat and corrosion resistance of high electrical conductivity Al-Mg-Si alloys by multi-alloying of Ce, Sc and Y

Weiyi Wang, Qinglin Pan, Xiangdong Wang, Bing Liu

Summary: By adding Ce, Sc, Y and Zr elements to Al-Mg-Si alloy, the microstructure of the alloy can be regulated, and the corrosion and heat resistance of the materials can be improved.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

In-situ measurement of electrochemical activity related to filiform corrosion in organic coated steel by scanning vibrating electrode technique and scanning micropotentiometry

Andrea Cristoforetti, Javier Izquierdo, Ricardo M. Souto, Flavio Deflorian, Michele Fedel, Stefano Rossi

Summary: This study presents a new approach to studying the mechanism of filiform corrosion in organic coated steel using the scanning vibrating electrode technique (SVET) and micropotentiometry (potentiometric SECM). The electrochemical activity under the coating was evaluated by mapping the ionic current densities coming from artificial defects made in specific locations of the filament. Antimony tips were also used to investigate the pH changes associated with different corrosion reactions at the metal-paint interface. Local pH levels along the filament in the anodic and cathodic regions were determined.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water

Yang Gao, Dayun Sun, Zhu Liu, Shuo Cong, Rui Tang, Yanping Huang, Lefu Zhang, Xianglong Guo

Summary: The corrosion characteristics of a novel alumina-forming austenitic steel in high-pressure high-temperature water environment were studied. The addition of aluminum has a negative effect on the continuity of the alumina scale.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Investigating the influence of pigmentation on the electrolyte transport properties of organic coatings using ORP-EIS

Negin Madelat, Benny Wouters, Peter Visser, Zahra Jiryaeisharahi, Kristof Marcoen, Shoshan T. Abrahami, Annick Hubin, Herman Terryn, Tom Hauffman

Summary: This work explores the correlation between electrolyte transport properties and the variation of pigment volume concentration (PVC) in organic coatings. An odd random phase electrochemical impedance spectroscopy (ORP-EIS) approach is used to analyze the diffusion of ions independent from water uptake. The results show that a higher PVC leads to a more homogeneous coating structure, resulting in faster diffusion of ions and enhanced water uptake.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposed to static Pb-Bi eutectic at 400 °C

Eloa Lopes Maia, Serguei Gavrilov, Valentyn Tsisar, Kitty Baert, Iris De Graeve

Summary: The effect of pre-oxidation in air at 300-500°C on the initiation and development of liquid metal corrosion attack on 316L austenitic steel in static lead-bismuth eutectic (LBE) has been investigated. It was found that pre-formed oxide films can protect the surface against dissolution, while high temperature pre-oxidation leads to localized corrosion.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Understanding the non-steady electrochemical mechanism on SCC of 304 SS under applied polarization potentials

Baozhuang Sun, Qiuyu Wang, Yue Pan, Zhiyong Liu, Cuiwei Du, Xiaogang Li

Summary: In this study, a non-steady electrochemical model was established to investigate stress corrosion cracking (SCC). The model was verified using 304 SS with various microstructures, confirming its effectiveness in assessing SCC susceptibility.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Corrosion mechanism and corrosion behavior prediction of Cu-10Ni-X alloys in NaCl solution combining DFT calculation and experiments

Xingyu Xiao, Xinhua Liu, Zhilei Wang, Xuexu Xu, Mingying Chen, Jianxin Xie

Summary: The corrosion behavior and mechanisms of Cu-10Ni-X (Al, Fe, Mn, Cr, Sn, Ti, Zn) alloys in a 3.5% NaCl solution were systematically investigated. Both computational and experimental results revealed that except Ti, other elements could enhance the corrosion resistance of Cu2O passivation film.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Effect of aluminium addition on the oxidation and carburization behaviour of austenitic stainless in high-temperature SCO2 environments

Gen Zhang, Yan-Ping Huang, E. Jiang, Wei -Wei Liu, Hong Yang, Jing Xiong, Yong-Fu Zhao

Summary: The addition of aluminum has a significant influence on the intermetallic compounds in AFA alloys, particularly increasing the content of B2-NiAl phase. In the SCO2 environment, the oxide scales formed on AFA alloys with aluminum were thinner than on ASS without aluminum, and the structure of the oxide scales changed to a double-layer structure.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Improved thermal properties and CMAS corrosion resistance of rare-earth monosilicates by adjusting the configuration entropy with RE-doping

Yuxuan He, Guozheng Xiao, Chao Wang, Xuefeng Lu, Liuyuan Li, Shiying Liu, Yusheng Wu, Zhanjie Wang

Summary: The relationship between configurational entropy and lattice distortion in novel rare earth monosilicates was investigated, and the effect of configurational entropy on their properties was studied. The results showed that lattice distortion increased with the increase of configurational entropy, but a highly symmetrical crystal structure was formed when the configurational entropy was large enough, inhibiting the lattice distortion.

CORROSION SCIENCE (2024)