4.6 Article

A generalized superstructure-based framework for process synthesis

Journal

COMPUTERS & CHEMICAL ENGINEERING
Volume 133, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2019.106653

Keywords

Global optimization; Mixed-integer nonlinear programming; Reactors; Separations; Heat integration; Process design

Funding

  1. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0018409]

Ask authors/readers for more resources

We propose a general framework for the formulation of superstructure-based optimization models for holistic process synthesis. First, we redefine the fundamental problems of reactor, separation, and heat exchanger network synthesis, by presenting generalized problem statements, to make them amenable to seamless integration with each other. Second, we describe the general forms of models that can be developed to address these generalized problems and identify some key characteristics. Notably, for each system, we identify internal variables used only within the system, cost variables used in the objective function, and, importantly, coupling variables for the coupling between systems. Third, we outline some literature models that can be used to address the generalized problems and present new models to couple the three systems. Finally, we show how the individual components (systems and coupling models) can be integrated to formulate a single simultaneous reactor, separation, and heat exchanger network synthesis. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available