4.4 Article

Hidden Markov Model-based Load Balancing in Data Center Networks

Journal

COMPUTER JOURNAL
Volume 63, Issue 10, Pages 1449-1462

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/comjnl/bxz142

Keywords

hidden Markov Model (HMM); load balancing algorithm; data center

Funding

  1. Natural Science Foundation of Fujian Province, China

Ask authors/readers for more resources

Modern data centers provide multiple parallel paths for end-to-end communications. Recent studies have been done on how to allocate rational paths for data flows to increase the throughput of data center networks. A centralized load balancing algorithm can improve the rationality of the path selection by using path bandwidth information. However, to ensure the accuracy of the information, current centralized load balancing algorithms monitor all the link bandwidth information in the path to determine the path bandwidth. Due to the excessive link bandwidth information monitored by the controller, however, much time is consumed, which is unacceptable for modern data centers. This paper proposes an algorithm called hidden Markov Model-based Load Balancing (HMMLB). HMMLB utilizes the hidden Markov Model (HMM) to select paths for data flows with fewer monitored links, less time cost, and approximate the same network throughput rate as a traditional centralized load balancing algorithm. To generate HMMLB, this research first turns the problem of path selection into an HMM problem. Secondly, deploying traditional centralized load balancing algorithms in the data center topology to collect training data. Finally, training the HMM with the collected data. Through simulation experiments, this paper verifies HMMLB's effectiveness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available