4.7 Article

Synergetic ternary metal oxide nanodots-graphene cathode for high performance zinc energy storage

Journal

CHINESE CHEMICAL LETTERS
Volume 31, Issue 9, Pages 2358-2364

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2020.03.014

Keywords

Hybrid zinc battery; Cathode; Ternary metal oxide; Energy storage; Electrochemical performance

Funding

  1. National Nature Science Foundations of China [21673263, 21805292]
  2. One-Three-Five Strategic Planning of Chinese Academy of Sciences (CAS)
  3. DNL Cooperation Fund, CAS [DNL180307]

Ask authors/readers for more resources

Zinc-based electrochemistry energy storage with high safety and high theoretical capacity is considered to be a competitive candidate to replace lithium-ion batteries. In electrochemical energy storage, multimetal oxide cathode materials can generally provide a wider electrochemical stability window and a higher capacity compared with single metal oxides cathode. Here, a new type of cathode material, MnFe2Co3O8 nanodots/functional graphene sheets, is designed and used for aqueous hybrid Zn-based energy storage. Coupling with a hybrid electrolyte based on zinc sulfate and potassium hydroxide, the asfabricated battery was able to work with a wide electrochemical window of 0.1 similar to 1.8 V, showed a high specific capacity of 660 mAh/g, delivered an ultrahigh energy density of 1135 Wh/kg and a scalable power density of 5754 W/kg (calculated based on the cathode), and displayed a long cycling life of 1000 cycles. These are mainly attributed to the valence charge density distribution in MnFe2Co3O8 nanodots, the good structural strengthening as well as high conductivity of the cathode, and the right electrolyte. Such cathode material also exhibited high electrocatalytic activity for oxygen evolution reaction and thus could be used for constructing a Zn-air battery with an ultrahigh reversible capacity of 9556 mAh/g. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available