4.8 Article

Programmable Electrostatic Interactions Expand the Landscape of Dynamic Functional Hydrogels

Journal

CHEMISTRY OF MATERIALS
Volume 32, Issue 5, Pages 1937-1945

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.9b04726

Keywords

-

Funding

  1. National Natural Science Foundation of China [21674061, 21406138, 31470216]
  2. National Key Research and Development Program of China [2016YFE0204400]

Ask authors/readers for more resources

Electrostatic interaction is a promising mechanism to expand the range of physiochemical properties of hydrogel materials. However, the versatility of such materials is still limited because of the difficulties associated with harnessing strong electrostatic interactions for controllable hydrogel formation. Here we report a modular approach for programming interactions between positively charged biopolymers and polyoxometalate (POM) anions to create dynamic hydrogels. Fabrication of diverse hydrogels was achieved simply by soaking primary networks with predispersed chitosan in aqueous solutions of POMs with various nuclearity and charges. This resulted in double network (DN) hydrogels with 2-3 orders of magnitude higher toughness compared with the precedent composite hydrogels. In addition, the dynamic electrostatic interactions endowed the DN hydrogels reversible responsiveness and intriguing capabilities to memorize shapes, to actuate, and to change colors upon exposure to specific external cues, which are challenging to achieve in previous hydrogels. Furthermore, the flexibility of our approach is demonstrated by the use of either physically or chemically cross-linked primary networks, which are composed of synthetic polymers, natural biopolymers, and even genetically engineered protein polymers. Consequently, our facile and modular approach establishes new opportunities in design and fabrication of dynamic functional hydrogels for wide applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available